Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
BMJ Open ; 14(7): e083277, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019638

ABSTRACT

INTRODUCTION: Relapses in ANCA-associated vasculitis (AAV) increase the incidence of end-organ damage and their prevention requires prolonged immunosuppressive therapy. Rituximab, a type I anti-CD20 B cell depleting monoclonal antibody, is the current standard of care for induction of disease remission. Rituximab is not always effective and is associated with a high subsequent relapse risk. Obinutuzumab is a type II anti-CD20 humanised monoclonal antibody with the potential to obtain greater tissue B cell depletion than rituximab and reduce relapse risk in AAV. METHODS AND ANALYSIS: ObiVas is a randomised, phase II, double-blind controlled trial that will compare the mechanistic effects of rituximab and obinutuzumab in the induction treatment of patients with AAV positive for proteinase 3 ANCA (PR3-ANCA). 26 patients, either newly diagnosed or relapsing, will be recruited from a single centre and randomised in a 1:1 ratio to receive 1000 mg rituximab or obinutuzumab as induction therapy on days 1 and 15, alongside a tapering glucocorticoid regimen. The primary end point is CD19+ B cell depletion in nasal-associated lymphoid tissue (NALT), assessed as change from baseline to week 26. Secondary outcomes will compare the safety and clinical efficacy of rituximab and obinutuzumab and their impact on immune biomarkers, including tissue and peripheral blood lymphocyte subsets and PR3-ANCA binding levels. Patients are followed through to week 78. The trial opened for recruitment in January 2023 and is forecasted to complete recruitment by the end of 2024. ETHICS AND DISSEMINATION: For all patients, informed written consent will be obtained in keeping with Good Clinical Practice. Trial results will be disseminated to the relevant scientific, clinical and patient communities on trial closure. NALT data analysis will start before trial completion. Other analyses will be reported after trial completion. This trial was given ethical approval by Edgbaston (West Midlands) Research Ethics Committee (approval reference 22/WM/0174). TRIAL REGISTRATION NUMBER: ISRCTN13069630.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Antibodies, Monoclonal, Humanized , Rituximab , Humans , Rituximab/therapeutic use , Rituximab/administration & dosage , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Double-Blind Method , Randomized Controlled Trials as Topic , Clinical Trials, Phase II as Topic , Immunologic Factors/therapeutic use , Immunologic Factors/administration & dosage , Male , Female
2.
Immunol Cell Biol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853634

ABSTRACT

The ability to characterize immune cells and explore the molecular interactions that govern their functions has never been greater, fueled in recent years by the revolutionary advance of single-cell analysis platforms. However, precisely how immune cells respond to different stimuli and where differentiation processes and effector functions operate remain incompletely understood. Inferring cellular fate within single-cell transcriptomic analyses is now omnipresent, despite the assumptions typically required in such analyses. Recently developed experimental models support dynamic analyses of the immune response, providing insights into the temporal changes that occur within cells and the tissues in which such transitions occur. Here we will review these approaches and discuss how these can be combined with single-cell technologies to develop a deeper understanding of the immune responses that should support the development of better therapeutic options for patients.

3.
Gut ; 73(9): 1464-1477, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38857990

ABSTRACT

OBJECTIVE: Epigenetic mechanisms, including DNA methylation (DNAm), have been proposed to play a key role in Crohn's disease (CD) pathogenesis. However, the specific cell types and pathways affected as well as their potential impact on disease phenotype and outcome remain unknown. We set out to investigate the role of intestinal epithelial DNAm in CD pathogenesis. DESIGN: We generated 312 intestinal epithelial organoids (IEOs) from mucosal biopsies of 168 patients with CD (n=72), UC (n=23) and healthy controls (n=73). We performed genome-wide molecular profiling including DNAm, bulk as well as single-cell RNA sequencing. Organoids were subjected to gene editing and the functional consequences of DNAm changes evaluated using an organoid-lymphocyte coculture and a nucleotide-binding oligomerisation domain, leucine-rich repeat and CARD domain containing 5 (NLRC5) dextran sulphate sodium (DSS) colitis knock-out mouse model. RESULTS: We identified highly stable, CD-associated loss of DNAm at major histocompatibility complex (MHC) class 1 loci including NLRC5 and cognate gene upregulation. Single-cell RNA sequencing of primary mucosal tissue and IEOs confirmed the role of NLRC5 as transcriptional transactivator in the intestinal epithelium. Increased mucosal MHC-I and NLRC5 expression in adult and paediatric patients with CD was validated in additional cohorts and the functional role of MHC-I highlighted by demonstrating a relative protection from DSS-mediated mucosal inflammation in NLRC5-deficient mice. MHC-I DNAm in IEOs showed a significant correlation with CD disease phenotype and outcomes. Application of machine learning approaches enabled the development of a disease prognostic epigenetic molecular signature. CONCLUSIONS: Our study has identified epigenetically regulated intestinal epithelial MHC-I as a novel mechanism in CD pathogenesis.


Subject(s)
Crohn Disease , DNA Methylation , Epigenesis, Genetic , Intestinal Mucosa , Organoids , Humans , Crohn Disease/genetics , Crohn Disease/pathology , Crohn Disease/metabolism , Organoids/metabolism , Organoids/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Animals , Female , Male , Mice, Knockout , Biological Specimen Banks , Adult , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Disease Models, Animal , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
4.
Kidney Int ; 106(2): 302-316, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38692408

ABSTRACT

Organ shortage is a major challenge in kidney transplantation but the use of older donors, often with co-morbidities, is hampered by inconsistent outcomes. Methods of accurately stratifying marginal donor organs by clinical and histological assessment are lacking. To better understand organ variability, we profiled the transcriptomes of 271 kidneys from deceased donors at retrieval. Following correction for biopsy composition, we assessed molecular pathways that associated with delayed, and sub-optimal one-year graft function. Analysis of cortical biopsies identified an adaptive immune gene-rich module that significantly associated with increasing age and worse outcomes. Cellular deconvolution using human kidney reference single cell transcriptomes confirmed an increase in kidney-specific B and T cell signatures, as well as kidney macrophage, myofibroblast and fibroblast gene sets in this module. Surprisingly, innate immune pathway and neutrophil gene signature enrichment was associated with better outcomes. Thus, our work uncovers cellular molecular features of pathological organ ageing, identifiable at kidney retrieval, with translational potential.


Subject(s)
Gene Expression Profiling , Kidney Transplantation , Kidney , Transcriptome , Humans , Kidney Transplantation/adverse effects , Kidney/pathology , Kidney/immunology , Biopsy , Middle Aged , Male , Adult , Female , Gene Expression Profiling/methods , Aged , Age Factors , Tissue Donors , Aging/pathology , Aging/genetics , Aging/immunology , Pathology, Molecular/methods , Immunity, Innate , Adaptive Immunity/genetics , Young Adult , Single-Cell Analysis , Graft Survival/immunology
5.
Cell Rep ; 43(6): 114253, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38781074

ABSTRACT

Diabetic kidney disease (DKD), the most common cause of kidney failure, is a frequent complication of diabetes and obesity, and yet to date, treatments to halt its progression are lacking. We analyze kidney single-cell transcriptomic profiles from DKD patients and two DKD mouse models at multiple time points along disease progression-high-fat diet (HFD)-fed mice aged to 90-100 weeks and BTBR ob/ob mice (a genetic model)-and report an expanding population of macrophages with high expression of triggering receptor expressed on myeloid cells 2 (TREM2) in HFD-fed mice. TREM2high macrophages are enriched in obese and diabetic patients, in contrast to hypertensive patients or healthy controls in an independent validation cohort. Trem2 knockout mice on an HFD have worsening kidney filter damage and increased tubular epithelial cell injury, all signs of worsening DKD. Together, our studies suggest that strategies to enhance kidney TREM2high macrophages may provide therapeutic benefits for DKD.


Subject(s)
Diabetic Nephropathies , Diet, High-Fat , Kidney , Macrophages , Membrane Glycoproteins , Mice, Knockout , Obesity , Receptors, Immunologic , Animals , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Macrophages/metabolism , Obesity/metabolism , Obesity/pathology , Obesity/complications , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Mice , Kidney/pathology , Kidney/metabolism , Humans , Male , Mice, Inbred C57BL , Female
6.
Article in English | MEDLINE | ID: mdl-38594932

ABSTRACT

The development and deployment of single-cell genomic technologies have driven a resolution revolution in our understanding of the immune system, providing unprecedented insight into the diversity of immune cells present throughout the body and their function in health and disease. Waldeyer's ring is the collective name for the lymphoid tissue aggregations of the upper aerodigestive tract, comprising the palatine, pharyngeal (adenoids), lingual, and tubal tonsils. These tonsils are the first immune sentinels encountered by ingested and inhaled antigens and are responsible for mounting the first wave of adaptive immune response. An effective mucosal immune response is critical to neutralizing infection in the upper airway and preventing systemic spread, and dysfunctional immune responses can result in ear, nose, and throat pathologies. This review uses Waldeyer's ring to demonstrate how single-cell technologies are being applied to advance our understanding of the immune system and highlight directions for future research.

7.
Nature ; 628(8008): 612-619, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509366

ABSTRACT

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Subject(s)
Dura Mater , Immunity, Humoral , Lymphoid Tissue , Veins , Administration, Intranasal , Antigens/administration & dosage , Antigens/immunology , Bone Marrow/immunology , Central Nervous System/blood supply , Central Nervous System/immunology , Dura Mater/blood supply , Dura Mater/immunology , Germinal Center/cytology , Germinal Center/immunology , Lymphatic Vessels/immunology , Lymphoid Tissue/blood supply , Lymphoid Tissue/immunology , Plasma Cells/immunology , Skull/blood supply , T-Lymphocytes/immunology , Veins/physiology , Humans , Male , Female , Adult , Middle Aged , Animals , Mice , Aged, 80 and over
8.
Dev Cell ; 59(5): 595-612.e8, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38340720

ABSTRACT

During kidney development, nephron epithelia arise de novo from fate-committed mesenchymal progenitors through a mesenchymal-to-epithelial transition (MET). Downstream of fate specification, transcriptional mechanisms that drive establishment of epithelial morphology are poorly understood. We used human iPSC-derived renal organoids, which recapitulate nephrogenesis, to investigate mechanisms controlling renal MET. Multi-ome profiling via snRNA-seq and ATAC-seq of organoids identified dynamic changes in gene expression and chromatin accessibility driven by activators and repressors throughout MET. CRISPR interference identified that paired box 8 (PAX8) is essential for initiation of MET in human renal organoids, contrary to in vivo mouse studies, likely by activating a cell-adhesion program. While Wnt/ß-catenin signaling specifies nephron fate, we find that it must be attenuated to allow hepatocyte nuclear factor 1-beta (HNF1B) and TEA-domain (TEAD) transcription factors to drive completion of MET. These results identify the interplay between fate commitment and morphogenesis in the developing human kidney, with implications for understanding both developmental kidney diseases and aberrant epithelial plasticity following adult renal tubular injury.


Subject(s)
Kidney , Nephrons , Humans , Mice , Animals , Kidney/metabolism , Cell Differentiation/genetics , Transcription Factors/metabolism , Signal Transduction , Epithelial-Mesenchymal Transition
9.
bioRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370662

ABSTRACT

Immunological determinants favouring emergence of broadly neutralising antibodies are crucial to the development of HIV-1 vaccination strategies. Here, we combined RNAseq and B cell cloning approaches to isolate a broadly neutralising antibody (bnAb) ELC07 from an individual living with untreated HIV-1. Using single particle cryogenic electron microscopy (cryo-EM), we show that the antibody recognises a conformational epitope at the gp120-gp41 interface. ELC07 binds the closed state of the viral glycoprotein causing considerable perturbations to the gp41 trimer core structure. Phenotypic analysis of memory B cell subsets from the ELC07 bnAb donor revealed a lack of expected HIV-1-associated dysfunction, specifically no increase in CD21-/CD27- cells was observed whilst the resting memory (CD21+/CD27+) population appeared preserved despite uncontrolled HIV-1 viraemia. Moreover, single cell transcriptomes of memory B cells from this bnAb donor showed a resting memory phenotype irrespective of the epitope they targeted or their ability to neutralise diverse strains of HIV-1. Strikingly, single memory B cells from the ELC07 bnAb donor were transcriptionally similar to memory B cells from HIV-negative individuals. Our results demonstrate that potent bnAbs can arise without the HIV-1-induced dysregulation of the memory B cell compartment and suggest that sufficient levels of antigenic stimulation with a strategically designed immunogen could be effective in HIV-negative vaccine recipients.

10.
Nat Commun ; 15(1): 683, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267402

ABSTRACT

Immune cell dysfunction within the tumor microenvironment (TME) undermines the control of cancer progression. Established tumors contain phenotypically distinct, tumor-specific natural killer (NK) cells; however, the temporal dynamics, mechanistic underpinning and functional significance of the NK cell compartment remains incompletely understood. Here, we use photo-labeling, combined with longitudinal transcriptomic and cellular analyses, to interrogate the fate of intratumoral NK cells. We reveal that NK cells rapidly lose effector functions and adopt a distinct phenotypic state with features associated with tissue residency. NK cell depletion from established tumors did not alter tumor growth, indicating that intratumoral NK cells cease to actively contribute to anti-tumor responses. IL-15 administration prevented loss of function and improved tumor control, generating intratumoral NK cells with both tissue-residency characteristics and enhanced effector function. Collectively, our data reveals the fate of NK cells after recruitment into tumors and provides insight into how their function may be revived.


Subject(s)
Internship and Residency , Neoplasms , Humans , Gene Expression Profiling , Killer Cells, Natural , Transcriptome , Tumor Microenvironment
11.
Nat Commun ; 15(1): 682, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267413

ABSTRACT

Tumour dendritic cells (DCs) internalise antigen and upregulate CCR7, which directs their migration to tumour-draining lymph nodes (dLN). CCR7 expression is coupled to an activation programme enriched in regulatory molecule expression, including PD-L1. However, the spatio-temporal dynamics of CCR7+ DCs in anti-tumour immune responses remain unclear. Here, we use photoconvertible mice to precisely track DC migration. We report that CCR7+ DCs are the dominant DC population that migrate to the dLN, but a subset remains tumour-resident despite CCR7 expression. These tumour-retained CCR7+ DCs are phenotypically and transcriptionally distinct from their dLN counterparts and heterogeneous. Moreover, they progressively downregulate the expression of antigen presentation and pro-inflammatory transcripts with more prolonged tumour dwell-time. Tumour-residing CCR7+ DCs co-localise with PD-1+CD8+ T cells in human and murine solid tumours, and following anti-PD-L1 treatment, upregulate stimulatory molecules including OX40L, thereby augmenting anti-tumour cytolytic activity. Altogether, these data uncover previously unappreciated heterogeneity in CCR7+ DCs that may underpin a variable capacity to support intratumoural cytotoxic T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Animals , Mice , Receptors, CCR7/genetics , Neoplasms/genetics , Neoplasms/therapy , Antigen Presentation , Dendritic Cells
12.
Nat Biotechnol ; 42(1): 40-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37055623

ABSTRACT

Assessment of single-cell gene expression (single-cell RNA sequencing) and adaptive immune receptor (AIR) sequencing (scVDJ-seq) has been invaluable in studying lymphocyte biology. Here we introduce Dandelion, a computational pipeline for scVDJ-seq analysis. It enables the application of standard V(D)J analysis workflows to single-cell datasets, delivering improved V(D)J contig annotation and the identification of nonproductive and partially spliced contigs. We devised a strategy to create an AIR feature space that can be used for both differential V(D)J usage analysis and pseudotime trajectory inference. The application of Dandelion improved the alignment of human thymic development trajectories of double-positive T cells to mature single-positive CD4/CD8 T cells, generating predictions of factors regulating lineage commitment. Dandelion analysis of other cell compartments provided insights into the origins of human B1 cells and ILC/NK cell development, illustrating the power of our approach. Dandelion is available at https://www.github.com/zktuong/dandelion .


Subject(s)
Taraxacum , Humans , T-Lymphocytes , Single-Cell Analysis
13.
Nat Rev Nephrol ; 20(2): 71-72, 2024 02.
Article in English | MEDLINE | ID: mdl-38129546

Subject(s)
Genomics , Kidney , Humans
14.
Proc Natl Acad Sci U S A ; 120(52): e2318710120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38109523

ABSTRACT

Recent studies have characterized various mouse antigen-presenting cells (APCs) expressing the lymphoid-lineage transcription factor RORγt (Retinoid-related orphan receptor gamma t), which exhibit distinct phenotypic features and are implicated in the induction of peripheral regulatory T cells (Tregs) and immune tolerance to microbiota and self-antigens. These APCs encompass Janus cells and Thetis cell subsets, some of which express the AutoImmune REgulator (AIRE). RORγt+ MHCII+ type 3 innate lymphoid cells (ILC3) have also been implicated in the instruction of microbiota-specific Tregs. While RORγt+ APCs have been actively investigated in mice, the identity and function of these cell subsets in humans remain elusive. Herein, we identify a rare subset of RORγt+ cells with dendritic cell (DC) features through integrated single-cell RNA sequencing and single-cell ATAC sequencing. These cells, which we term RORγt+ DC-like cells (R-DC-like), exhibit DC morphology, express the MHC class II machinery, and are distinct from all previously reported DC and ILC3 subsets, but share transcriptional and epigenetic similarities with DC2 and ILC3. We have developed procedures to isolate and expand them in vitro, enabling their functional characterization. R-DC-like cells proliferate in vitro, continue to express RORγt, and differentiate into CD1c+ DC2-like cells. They stimulate the proliferation of allogeneic T cells. The identification of human R-DC-like cells with proliferative potential and plasticity toward CD1c+ DC2-like cells will prompt further investigation into their impact on immune homeostasis, inflammation, and autoimmunity.


Subject(s)
Immunity, Innate , Lymphocytes , Humans , Mice , Animals , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Inflammation/metabolism , Dendritic Cells
15.
Sci Immunol ; 8(90): eadf9988, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100545

ABSTRACT

Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1ß drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1ß-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.


Subject(s)
Immunity, Innate , Lung , Humans , Cell Differentiation , Killer Cells, Natural , Epithelial Cells
16.
Nat Commun ; 14(1): 7081, 2023 11 04.
Article in English | MEDLINE | ID: mdl-37925420

ABSTRACT

B cells play a central role in humoral immunity but also have antibody-independent functions. Studies to date have focused on B cells in blood and secondary lymphoid organs but whether B cells reside in non-lymphoid organs (NLO) in homeostasis is unknown. Here we identify, using intravenous labeling and parabiosis, a bona-fide tissue-resident B cell population in lung, liver, kidney and urinary bladder, a substantial proportion of which are B-1a cells. Tissue-resident B cells are present in neonatal tissues and also in germ-free mice NLOs, albeit in lower numbers than in specific pathogen-free mice and following co-housing with 'pet-store' mice. They spatially co-localise with macrophages and regulate their polarization and function, promoting an anti-inflammatory phenotype, in-part via interleukin-10 production, with effects on bacterial clearance during urinary tract infection. Thus, our data reveal a critical role for tissue-resident B cells in determining the homeostatic 'inflammatory set-point' of myeloid cells, with important consequences for tissue immunity.


Subject(s)
B-Lymphocytes , Macrophages , Mice , Animals , Antibodies , Liver , Lung
17.
Front Immunol ; 14: 1106294, 2023.
Article in English | MEDLINE | ID: mdl-37744333

ABSTRACT

To date, studies of tissue-resident immunity have mainly focused on innate immune cells and T cells, with limited data on B cells. B-1 B cells are a unique subset of B cells with innate-like properties, enriched in murine pleural and peritoneal cavities and distinct from conventional B-2 cells in their ontogeny, phenotype and function. Here we discuss how B-1 cells represent exemplar tissue-resident immune cells, summarizing the evidence for their long-term persistence & self-renewal within tissues, differential transcriptional programming shaped by organ-specific environmental cues, as well as their tissue-homeostatic functions. Finally, we review the emerging data supporting the presence and homeostatic role of B-1 cells across non-lymphoid organs (NLOs) both in mouse and human.


Subject(s)
B-Lymphocyte Subsets , Humans , Animals , Mice , B-Lymphocytes , Cues , Homeostasis , Peritoneal Cavity
18.
Genome Biol ; 24(1): 189, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582793

ABSTRACT

The binding of transcription factors at proximal promoters and distal enhancers is central to gene regulation. Identifying regulatory motifs and quantifying their impact on expression remains challenging. Using a convolutional neural network trained on single-cell data, we infer putative regulatory motifs and cell type-specific importance. Our model, scover, explains 29% of the variance in gene expression in multiple mouse tissues. Applying scover to distal enhancers identified using scATAC-seq from the developing human brain, we identify cell type-specific motif activities in distal enhancers. Scover can identify regulatory motifs and their importance from single-cell data where all parameters and outputs are easily interpretable.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation , Humans , Animals , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Promoter Regions, Genetic , Neural Networks, Computer , Nucleotide Motifs
19.
Cell Rep ; 42(8): 112991, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37590132

ABSTRACT

Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response.


Subject(s)
COVID-19 , Aged , Humans , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL