Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Nat Genet ; 56(5): 809-818, 2024 May.
Article En | MEDLINE | ID: mdl-38671320

Here, in a multi-ancestry genome-wide association study meta-analysis of kidney cancer (29,020 cases and 835,670 controls), we identified 63 susceptibility regions (50 novel) containing 108 independent risk loci. In analyses stratified by subtype, 52 regions (78 loci) were associated with clear cell renal cell carcinoma (RCC) and 6 regions (7 loci) with papillary RCC. Notably, we report a variant common in African ancestry individuals ( rs7629500 ) in the 3' untranslated region of VHL, nearly tripling clear cell RCC risk (odds ratio 2.72, 95% confidence interval 2.23-3.30). In cis-expression quantitative trait locus analyses, 48 variants from 34 regions point toward 83 candidate genes. Enrichment of hypoxia-inducible factor-binding sites underscores the importance of hypoxia-related mechanisms in kidney cancer. Our results advance understanding of the genetic architecture of kidney cancer, provide clues for functional investigation and enable generation of a validated polygenic risk score with an estimated area under the curve of 0.65 (0.74 including risk factors) among European ancestry individuals.


Carcinoma, Renal Cell , Genetic Predisposition to Disease , Genome-Wide Association Study , Kidney Neoplasms , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Humans , Kidney Neoplasms/genetics , Carcinoma, Renal Cell/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Case-Control Studies , White People/genetics
2.
mBio ; 12(4): e0086021, 2021 08 31.
Article En | MEDLINE | ID: mdl-34372703

Bacteria live in spatially organized aggregates during chronic infections, where they adapt to the host environment, evade immune responses, and resist therapeutic interventions. Although it is known that environmental factors such as polymers influence bacterial aggregation, it is not clear how bacterial adaptation during chronic infection impacts the formation and spatial organization of aggregates in the presence of polymers. Here, we show that in an in vitro model of cystic fibrosis (CF) containing the polymers extracellular DNA (eDNA) and mucin, O-specific antigen is a major factor determining the formation of two distinct aggregate assembly types of Pseudomonas aeruginosa due to alterations in cell surface hydrophobicity. Our findings suggest that during chronic infection, the interplay between cell surface properties and polymers in the environment may influence the formation and structure of bacterial aggregates, which would shed new light on the fitness costs and benefits of O-antigen production in environments such as CF lungs. IMPORTANCE During chronic infection, several factors contribute to the biogeography of microbial communities. Heterogeneous populations of Pseudomonas aeruginosa form aggregates in cystic fibrosis airways; however, the impact of this population heterogeneity on spatial organization and aggregate assembly is not well understood. In this study, we found that changes in O-specific antigen determine the spatial organization of P. aeruginosa cells by altering the relative cell surface hydrophobicity. This finding suggests a role for O-antigen in regulating P. aeruginosa aggregate size and shape in cystic fibrosis airways.


Cystic Fibrosis/microbiology , Hydrophobic and Hydrophilic Interactions , O Antigens/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Biofilms/growth & development , DNA , Humans , In Vitro Techniques , Mucins , O Antigens/genetics , Polymers
...