Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.435
Filter
1.
Alzheimers Dement ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258539

ABSTRACT

The magnetic resonance imaging (MRI) Core has been operating since Alzheimer's Disease Neuroimaging Initiative's (ADNI) inception, providing 20 years of data including reliable, multi-platform standardized protocols, carefully curated image data, and quantitative measures provided by expert investigators. The overarching purposes of the MRI Core include: (1) optimizing and standardizing MRI acquisition methods, which have been adopted by many multicenter studies and trials worldwide and (2) providing curated images and numeric summary values from relevant MRI sequences/contrasts to the scientific community. Over time, ADNI MRI has become increasingly complex. To remain technically current, the ADNI MRI protocol has changed substantially over the past two decades. The ADNI 4 protocol contains nine different imaging types (e.g., three dimensional [3D] T1-weighted and fluid-attenuated inversion recovery [FLAIR]). Our view is that the ADNI MRI data are a greatly underutilized resource. The purpose of this paper is to educate the scientific community on ADNI MRI methods and content to promote greater awareness, accessibility, and use. HIGHLIGHTS: The MRI Core provides multi-platform standardized protocols, carefully curated image data, and quantitative analysis by expert groups. The ADNI MRI protocol has undergone major changes over the past two decades to remain technically current. As of April 25, 2024, the following numbers of image series are available: 17,141 3D T1w; 6877 FLAIR; 3140 T2/PD; 6623 GRE; 3237 dMRI; 2846 ASL; 2968 TF-fMRI; and 2861 HighResHippo (see Table 1 for abbreviations). As of April 25, 2024, the following numbers of quantitative analyses are available: FreeSurfer 10,997; BSI 6120; tensor based morphometry (TBM) and TBM-SYN 12,019; WMH 9944; dMRI 1913; ASL 925; TF-fMRI NFQ 2992; and medial temporal subregion volumes 2726 (see Table 4 for abbreviations). ADNI MRI is an underutilized resource that could be more useful to the research community.

2.
J Neuroophthalmol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085998

ABSTRACT

BACKGROUND: Alzheimer disease (AD) and other dementias are associated with vascular changes and amyloid deposition, which may be reflected as density changes in the retinal capillaries. These changes may can be directly visualized and quantified with optical coherence tomography angiography (OCTA), making OCTA a potential noninvasive preclinical biomarker of small vessel disease and amyloid positivity. Our objective was to investigate the feasibility of retinal imaging metrics as noninvasive biomarkers of small vessel disease and amyloid positivity in the brain. METHODS: We investigated associations between OCTA and neuroimaging and cognitive metrics in 41 participants without dementia from the Mayo Clinic Study of Aging and Alzheimer's Disease Research Center. OCTA metrics included superficial, deep, and full retina capillary density of the fovea, parafovea, and macula as well as the area of the foveal avascular zone (FAZ). Neuroimaging metrics included a high burden of white matter hyperintensity (WMH), presence of cerebral microbleeds (CMB), lacunar infarcts, and amyloid positivity as evidenced on positron emission tomography (PET), whereas cognitive metrics included mini-mental status examination (MMSE) score. We performed generalized estimating equations to account for measurements in each eye while controlling for age and sex to estimate associations between OCTA metrics and neuroimaging and cognitive scores. RESULTS: Associations between OCTA and neuroimaging metrics were restricted to the fovea. OCTA showed decreased capillary density with high burden of WMH in both the superficial (P = 0.003), deep (P = 0.004), and full retina (P = 0.01) in the fovea but not the parafovea or whole macula. Similarly, participants with amyloid PET positivity had significantly decreased capillary density in the superficial fovea (P = 0.027) and deep fovea (P = 0.03) but higher density in the superficial parafovea (P = 0.038). Participants with amyloid PET positivity also had a significantly larger FAZ (P = 0.031), whereas in those with high WMH burden the difference did not reach statistical significance (P = 0.075). There was also a positive association between MMSE and capillary density of the full retina within the fovea (P = 0.037) and in the superficial parafovea (P = 0.046). No associations were found between OCTA metrics and presence of CMB or presence of lacunar infarcts. CONCLUSION: The associations of lower foveal capillary density with cerebral WMH and amyloid positivity suggest that further research is warranted to evaluate for shared mechanisms of disease between small vessel disease and AD pathologies.

3.
Alzheimers Dement ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115941

ABSTRACT

Phase four of the Alzheimer's Disease Neuroimaging Initiative (ADNI4) magnetic resonance imaging (MRI) protocols aim to maintain longitudinal consistency across two decades of data acquisition, while adopting new technologies. Here we describe and justify the study's design and targeted biomarkers. The ADNI4 MRI protocol includes nine MRI sequences. Some sequences require the latest hardware and software system upgrades and are continuously rolled out as they become available at each site. The main sequence additions/changes in ADNI4 are: (1) compressed sensing (CS) T1-weighting, (2) pseudo-continuous arterial spin labeling (ASL) on all three vendors (GE, Siemens, Philips), (3) multiple-post-labeling-delay ASL, (4) 1 mm3 isotropic 3D fluid-attenuated inversion recovery, and (5) CS 3D T2-weighted. ADNI4 aims to help the neuroimaging community extract valuable imaging biomarkers and provide a database to test the impact of advanced imaging strategies on diagnostic accuracy and disease sensitivity among individuals lying on the cognitively normal to impaired spectrum. HIGHLIGHTS: A summary of MRI protocols for phase four of the Alzheimer's Disease Neuroimaging Initiative (ADNI 4). The design and justification for the ADNI 4 MRI protocols. Compressed sensing and multi-band advances have been applied to improve scan time. ADNI4 protocols aim to streamline safety screening and therapy monitoring. The ADNI4 database will be a valuable test bed for academic research.

4.
Alzheimers Dement ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138886

ABSTRACT

INTRODUCTION: Well-chosen biomarkers have the potential to increase the efficiency of clinical trials and drug discovery and should show good precision as well as clinical validity. METHODS: We suggest measures that operationalize these criteria and describe a general approach that can be used for inference-based comparisons of biomarker performance. The methods are applied to measures obtained from structural magnetic resonance imaging (MRI) from individuals with mild dementia (n = 70) or mild cognitive impairment (MCI; n = 303) enrolled in the Alzheimer's Disease Neuroimaging Initiative. RESULTS: Ventricular volume and hippocampal volume showed the best precision in detecting change over time in both individuals with MCI and with dementia. Differences in clinical validity varied by group. DISCUSSION: The methodology presented provides a standardized framework for comparison of biomarkers across modalities and across different methods used to generate similar measures and will help in the search for the most promising biomarkers. HIGHLIGHTS: A framework for comparison of biomarkers on pre-defined criteria is presented. Criteria for comparison include precision in capturing change and clinical validity. Ventricular volume has high precision in change for both dementia and mild cognitive impairment (MCI) trials. Imaging measures' performance in clinical validity varies more for dementia than for MCI.

5.
medRxiv ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39108526

ABSTRACT

Introduction: Biomarkers have been essential to understanding Alzheimer's disease (AD) pathogenesis, pathophysiology, progression, and treatment effects. However, each biomarker measure is a representation of the biological target, the assay used to measure it, and the variance of the assay. Thus, biomarker measures are difficult to compare without standardization, and the units and magnitude of effect relative to the disease are difficult to appreciate, even for experts. To facilitate quantitative comparisons of AD biomarkers in the context of biologic and treatment effects, we propose a biomarker standardization approach between normal ranges and maximum abnormal AD ranges, which we refer to as CentiMarker, similar to the Centiloid approach used in PET. Methods: We developed a standardization scale that creates percentile values ranging from 0 for a normal population to 100 for the most abnormal measures across disease stages. We applied this scale to CSF and plasma biomarkers in autosomal dominant AD, assessing the distribution by estimated years from symptom onset, between biomarkers, and across cohorts. We then validated this approach in a large national sporadic AD cohort. Results: We found the CentiMarker scale provided an easily interpretable metric of disease abnormality. The biologic changes, range, and distribution of several AD fluid biomarkers including amyloid-ß, phospho-tau and other biomarkers, were comparable across disease stages in both early onset autosomal dominant and sporadic late onset AD. Discussion: The CentiMarker scale offers a robust and versatile framework for the standardized biological comparison of AD biomarkers. Its broader adoption could facilitate biomarker reporting, allowing for more informed cross-study comparisons and contributing to accelerated therapeutic development.

6.
Article in English | MEDLINE | ID: mdl-39179297

ABSTRACT

With the full FDA approval and centers for Medicare & Medicaid services (CMS) coverage of lecanemab and donanemab, a growing number of practices are offering anti-amyloid immunotherapy to appropriate patients with cognitive impairment (MCI) or mild dementia due to amyloid-positive Alzheimer's disease (AD). The goal of this paper is to provide updated practical considerations for radiologists, including implementation of MR imaging protocols, workflows and reporting and communication practices relevant to anti-amyloid immunotherapy and monitoring for amyloid-related imaging abnormalities (ARIA). Based on consensus discussion within an expanded ASNR Alzheimer's, ARIA, and Dementia study group, we will: (1) summarize the FDA guidelines for evaluation of radiographic ARIA; (2) review the three key MRI sequences for ARIA monitoring and standardized imaging protocols based on ASNR-industry collaborations; (3) provide imaging recommendations for three key patient scenarios; (4) highlight the role of the radiologist in the care team for this population; (5) discuss implementation of MRI protocols to detect ARIA in diverse practice settings; and (6) present results of the 2023 ASNR international neuroradiologist practice survey on dementia and ARIA imaging.ABBREVIATIONS: AD = Alzheimer's disease; ARIA = amyloid-related imaging abnormalities; APOE = apolipoprotein-E; CMS = centers for Medicare & Medicaid services; MCI = mild cognitive impairment.

8.
Lancet Neurol ; 23(9): 913-924, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39074479

ABSTRACT

BACKGROUND: Genetic variants that cause autosomal dominant Alzheimer's disease are highly penetrant but vary substantially regarding age at symptom onset (AAO), rates of cognitive decline, and biomarker changes. Most pathogenic variants that cause autosomal dominant Alzheimer's disease are in presenilin 1 (PSEN1), which encodes the catalytic core of γ-secretase, an enzyme complex that is crucial in production of amyloid ß. We aimed to investigate whether the heterogeneity in AAO and biomarker trajectories in carriers of PSEN1 pathogenic variants could be predicted on the basis of the effects of individual PSEN1 variants on γ-secretase activity and amyloid ß production. METHODS: For this cross-sectional and longitudinal analysis, we used data from participants enrolled in the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS) via the DIAN-OBS data freeze version 15 (data collected between Feb 29, 2008, and June 30, 2020). The data freeze included data from 20 study sites in research institutions, universities, hospitals, and clinics across Europe, North and South America, Asia, and Oceania. We included individuals with PSEN1 pathogenic variants for whom relevant genetic, clinical, imaging, and CSF data were available. PSEN1 pathogenic variants were characterised via genetically modified PSEN1 and PSEN2 double-knockout human embryonic kidney 293T cells and immunoassays for Aß37, Aß38, Aß40, Aß42, and Aß43. A summary measure of γ-secretase activity (γ-secretase composite [GSC]) was calculated for each variant and compared with clinical history-derived AAO using correlation analyses. We used linear mixed-effect models to assess associations between GSC scores and multimodal-biomarker and clinical data from DIAN-OBS. We used separate models to assess associations with Clinical Dementia Rating Sum of Boxes (CDR-SB), Mini-Mental State Examination (MMSE), and Wechsler Memory Scale-Revised (WMS-R) Logical Memory Delayed Recall, [11C]Pittsburgh compound B (PiB)-PET and brain glucose metabolism using [18F] fluorodeoxyglucose (FDG)-PET, CSF Aß42-to-Aß40 ratio (Aß42/40), CSF log10 (phosphorylated tau 181), CSF log10 (phosphorylated tau 217), and MRI-based hippocampal volume. FINDINGS: Data were included from 190 people carrying PSEN1 pathogenic variants, among whom median age was 39·0 years (IQR 32·0 to 48·0) and AAO was 44·5 years (40·6 to 51·4). 109 (57%) of 190 carriers were female and 81 (43%) were male. Lower GSC values (ie, lower γ-secretase activity than wild-type PSEN1) were associated with earlier AAO (r=0·58; p<0·0001). GSC was associated with MMSE (ß=0·08, SE 0·03; p=0·0043), CDR-SB (-0·05, 0·02; p=0·0027), and WMS-R Logical Memory Delayed Recall scores (0·09, 0·02; p=0·0006). Lower GSC values were associated with faster increase in PiB-PET signal (p=0·0054), more rapid decreases in hippocampal volume (4·19, 0·77; p<0·0001), MMSE (0·02, 0·01; p=0·0020), and WMS-R Logical Memory Delayed Recall (0·004, 0·001; p=0·0003). INTERPRETATION: Our findings suggest that clinical heterogeneity in people with autosomal dominant Alzheimer's disease can be at least partly explained by different effects of PSEN1 variants on γ-secretase activity and amyloid ß production. They support targeting γ-secretase as a therapeutic approach and suggest that cell-based models could be used to improve prediction of symptom onset. FUNDING: US National Institute on Aging, Alzheimer's Association, German Center for Neurodegenerative Diseases, Raul Carrea Institute for Neurological Research, Japan Agency for Medical Research and Development, Korea Health Industry Development Institute, South Korean Ministry of Health and Welfare, South Korean Ministry of Science and ICT, and Spanish Institute of Health Carlos III.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Biomarkers , Presenilin-1 , Humans , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/metabolism , Alzheimer Disease/diagnosis , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Male , Female , Cross-Sectional Studies , Longitudinal Studies , Middle Aged , Presenilin-1/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Biomarkers/cerebrospinal fluid , Adult , Aged , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism , tau Proteins/genetics , Age of Onset
9.
Alzheimers Dement ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030981

ABSTRACT

INTRODUCTION: We aimed to evaluate clinical interpretation cutpoints for two plasma phosphorylated tau (p-tau)217 assays (ALZpath and Lumipulse) as predictors of amyloid status for implementation in clinical practice. METHODS: Clinical performance of plasma p-tau217 against amyloid positron emission tomography status was evaluated in participants with mild cognitive impairment or mild dementia (n = 427). RESULTS: Using a one-cutpoint approach (negative/positive), neither assay achieved ≥ 90% in both sensitivity and specificity. A two-cutpoint approach yielding 92% sensitivity and 96% specificity provided the desired balance of false positives and false negatives, while categorizing 20% and 39% of results as indeterminate for the Lumipulse and ALZpath assays, respectively. DISCUSSION: This study provides a systematic framework for selection of assay-specific cutpoints for clinical use of plasma p-tau217 for determination of amyloid status. Our findings suggest that a two-cutpoint approach may have advantages in optimizing diagnostic accuracy while minimizing potential harm from false positive results. HIGHLIGHTS: Phosphorylated tau (p-tau)217 cutpoints for detection of amyloid pathology were established. A two-cutpoint approach exhibited the best performance for clinical laboratory use. p-tau217 assays differed in the percentage of results categorized as intermediate.

10.
Brain Commun ; 6(4): fcae183, 2024.
Article in English | MEDLINE | ID: mdl-39021510

ABSTRACT

Predominant limbic degeneration has been associated with various underlying aetiologies and an older age, predominant impairment of episodic memory and slow clinical progression. However, the neurological syndrome associated with predominant limbic degeneration is not defined. This endeavour is critical to distinguish such a syndrome from those originating from neocortical degeneration, which may differ in underlying aetiology, disease course and therapeutic needs. We propose a set of clinical criteria for a limbic-predominant amnestic neurodegenerative syndrome that is highly associated with limbic-predominant age-related TDP-43 encephalopathy but also other pathologic entities. The criteria incorporate core, standard and advanced features, including older age at evaluation, mild clinical syndrome, disproportionate hippocampal atrophy, impaired semantic memory, limbic hypometabolism, absence of neocortical degeneration and low likelihood of neocortical tau, with degrees of certainty (highest, high, moderate and low). We operationalized this set of criteria using clinical, imaging and biomarker data to validate its associations with clinical and pathologic outcomes. We screened autopsied patients from Mayo Clinic and Alzheimer's Disease Neuroimaging Initiative cohorts and applied the criteria to those with an antemortem predominant amnestic syndrome (Mayo, n = 165; Alzheimer's Disease Neuroimaging Initiative, n = 53) and who had Alzheimer's disease neuropathological change, limbic-predominant age-related TDP-43 encephalopathy or both pathologies at autopsy. These neuropathology-defined groups accounted for 35, 37 and 4% of cases in the Mayo cohort, respectively, and 30, 22 and 9% of cases in the Alzheimer's Disease Neuroimaging Initiative cohort, respectively. The criteria effectively categorized these cases, with Alzheimer's disease having the lowest likelihoods, limbic-predominant age-related TDP-43 encephalopathy patients having the highest likelihoods and patients with both pathologies having intermediate likelihoods. A logistic regression using the criteria features as predictors of TDP-43 achieved a balanced accuracy of 74.6% in the Mayo cohort, and out-of-sample predictions in an external cohort achieved a balanced accuracy of 73.3%. Patients with high likelihoods had a milder and slower clinical course and more severe temporo-limbic degeneration compared to those with low likelihoods. Stratifying patients with both Alzheimer's disease neuropathological change and limbic-predominant age-related TDP-43 encephalopathy from the Mayo cohort according to their likelihoods revealed that those with higher likelihoods had more temporo-limbic degeneration and a slower rate of decline and those with lower likelihoods had more lateral temporo-parietal degeneration and a faster rate of decline. The implementation of criteria for a limbic-predominant amnestic neurodegenerative syndrome has implications to disambiguate the different aetiologies of progressive amnestic presentations in older age and guide diagnosis, prognosis, treatment and clinical trials.

11.
Alzheimers Res Ther ; 16(1): 157, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987827

ABSTRACT

BACKGROUND: White matter hyperintensities (WMH) are considered hallmark features of cerebral small vessel disease and have recently been linked to Alzheimer's disease (AD) pathology. Their distinct spatial distributions, namely periventricular versus deep WMH, may differ by underlying age-related and pathobiological processes contributing to cognitive decline. We aimed to identify the spatial patterns of WMH using the 4-scale Fazekas visual assessment and explore their differential association with age, vascular health, AD imaging markers, namely amyloid and tau burden, and cognition. Because our study consisted of scans from GE and Siemens scanners with different resolutions, we also investigated inter-scanner reproducibility and combinability of WMH measurements on imaging. METHODS: We identified 1144 participants from the Mayo Clinic Study of Aging consisting of a population-based sample from Olmsted County, Minnesota with available structural magnetic resonance imaging (MRI), amyloid, and tau positron emission tomography (PET). WMH distribution patterns were assessed on FLAIR-MRI, both 2D axial and 3D, using Fazekas ratings of periventricular and deep WMH severity. We compared the association of periventricular and deep WMH scales with vascular risk factors, amyloid-PET, and tau-PET standardized uptake value ratio, automated WMH volume, and cognition using Pearson partial correlation after adjusting for age. We also evaluated vendor compatibility and reproducibility of the Fazekas scales using intraclass correlations (ICC). RESULTS: Periventricular and deep WMH measurements showed similar correlations with age, cardiometabolic conditions score (vascular risk), and cognition, (p < 0.001). Both periventricular WMH and deep WMH showed weak associations with amyloidosis (R = 0.07, p = < 0.001), and none with tau burden. We found substantial agreement between data from the two scanners for Fazekas measurements (ICC = 0.82 and 0.74). The automated WMH volume had high discriminating power for identifying participants with Fazekas ≥ 2 (area under curve = 0.97) and showed poor correlation with amyloid and tau PET markers similar to the visual grading. CONCLUSION: Our study investigated risk factors underlying WMH spatial patterns and their impact on global cognition, with no discernible differences between periventricular and deep WMH. We observed minimal impact of amyloidosis on WMH severity. These findings, coupled with enhanced inter-scanner reproducibility of WMH data, suggest the combinability of inter-scanner data assessed by harmonized protocols in the context of vascular contributions to cognitive impairment and dementia biomarker research.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Positron-Emission Tomography , White Matter , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Female , Male , Aged , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging/methods , Aged, 80 and over , Reproducibility of Results , Middle Aged , tau Proteins/metabolism , Brain/diagnostic imaging , Brain/pathology
12.
J Alzheimers Dis ; 100(3): 879-897, 2024.
Article in English | MEDLINE | ID: mdl-38995784

ABSTRACT

Background: Conventional normative samples include individuals with undetected Alzheimer's disease neuropathology, lowering test sensitivity for cognitive impairment. Objective: We developed Mayo Normative Studies (MNS) norms limited to individuals without elevated amyloid or neurodegeneration (A-N-) for Rey's Auditory Verbal Learning Test (AVLT). We compared these MNS A-N- norms in female, male, and total samples to conventional MNS norms with varying levels of demographic adjustments. Methods: The A-N- sample included 1,059 Mayo Clinic Study of Aging cognitively unimpaired (CU) participants living in Olmsted County, MN, who are predominantly non-Hispanic White. Using a regression-based approach correcting for age, sex, and education, we derived fully-adjusted T-score formulas for AVLT variables. We validated these A-N- norms in two independent samples of CU (n = 261) and mild cognitive impairment (MCI)/dementia participants (n = 392) > 55 years of age. Results: Variability associated with age decreased by almost half in the A-N- norm sample relative to the conventional norm sample. Fully-adjusted MNS A-N- norms showed approximately 7- 9% higher sensitivity to MCI/dementia compared to fully-adjusted MNS conventional norms for trials 1- 5 total and sum of trials. Among women, sensitivity to MCI/dementia increased with each normative data refinement. In contrast, age-adjusted conventional MNS norms showed greatest sensitivity to MCI/dementia in men. Conclusions: A-N- norms show some benefits over conventional normative approaches to MCI/dementia sensitivity, especially for women. We recommend using these MNS A-N- norms alongside MNS conventional norms. Future work is needed to determine if normative samples that are not well characterized clinically show greater benefit from biomarker-refined approaches.


Subject(s)
Cognitive Dysfunction , Verbal Learning , Humans , Male , Female , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Aged , Middle Aged , Verbal Learning/physiology , Aged, 80 and over , Neuropsychological Tests/statistics & numerical data , Sex Factors , Dementia/diagnosis , Dementia/psychology , Reference Values
13.
Alzheimers Dement (Amst) ; 16(3): e12627, 2024.
Article in English | MEDLINE | ID: mdl-39077685

ABSTRACT

INTRODUCTION: Age-related and Alzheimer's disease (AD) dementia-related neurodegeneration impact brain health. While morphometric measures from T1-weighted scans are established biomarkers, they may be less sensitive to earlier changes. Neurite orientation dispersion and density imaging (NODDI), offering biologically meaningful interpretation of tissue microstructure, may be an advanced brain health biomarker. METHODS: We contrasted regional gray matter NODDI and morphometric evaluations concerning their correlation with (1) age, (2) clinical diagnosis stage, and (3) tau pathology as assessed by AV1451 positron emission tomography. RESULTS: Our study hypothesizes that NODDI measures are more sensitive to aging and early AD changes than morphometric measures. One NODDI output, free water fraction (FWF), showed higher sensitivity to age-related changes, generally better effect sizes in separating mild cognitively impaired from cognitively unimpaired participants, and stronger associations with regional tau deposition than morphometric measures. DISCUSSION: These findings underscore NODDI's utility in capturing early neurodegenerative changes and enhancing our understanding of aging and AD. Highlights: Neurite orientation dispersion and density imaging can serve as an effective brain health biomarker for aging and early Alzheimer's disease (AD).Free water fraction has higher sensitivity to normal brain aging.Free water fraction has stronger associations with early AD and regional tau deposition.

14.
Brain Commun ; 6(4): fcae233, 2024.
Article in English | MEDLINE | ID: mdl-39056025

ABSTRACT

Progressive supranuclear palsy (PSP) is a neurodegenerative tauopathy that presents with highly heterogenous clinical syndromes. We perform cross-sectional data-driven discovery of independent patterns of brain atrophy and hypometabolism across the entire PSP spectrum. We then use these patterns to predict specific clinical features and to assess their relationship to phenotypic heterogeneity. We included 111 patients with PSP (60 with Richardson syndrome and 51 with cortical and subcortical variant subtypes). Ninety-one were used as the training set and 20 as a test set. The presence and severity of granular clinical variables such as postural instability, parkinsonism, apraxia and supranuclear gaze palsy were noted. Domains of akinesia, ocular motor impairment, postural instability and cognitive dysfunction as defined by the Movement Disorders Society criteria for PSP were also recorded. Non-negative matrix factorization was used on cross-sectional MRI and fluorodeoxyglucose-positron emission tomography (FDG-PET) scans. Independent models for each as well as a combined model for MRI and FDG-PET were developed and used to predict the granular clinical variables. Both MRI and FDG-PET were better at predicting presence of a symptom than severity, suggesting identification of disease state may be more robust than disease stage. FDG-PET predicted predominantly cortical abnormalities better than MRI such as ideomotor apraxia, apraxia of speech and frontal dysexecutive syndrome. MRI demonstrated prediction of cortical and more so sub-cortical abnormalities, such as parkinsonism. Distinct neuroanatomical foci were predictive in MRI- and FDG-PET-based models. For example, vertical gaze palsy was predicted by midbrain atrophy on MRI, but frontal eye field hypometabolism on FDG-PET. Findings also differed by scale or instrument used. For example, prediction of ocular motor abnormalities using the PSP Saccadic Impairment Scale was stronger than with the Movement Disorders Society Diagnostic criteria for PSP oculomotor impairment designation. Combination of MRI and FDG-PET demonstrated enhanced detection of parkinsonism and frontal syndrome presence and apraxia, cognitive impairment and bradykinesia severity. Both MRI and FDG-PET patterns were able to predict some measures in the test set; however, prediction of global cognition measured by Montreal Cognitive Assessment was the strongest. MRI predictions generalized more robustly to the test set. PSP leads to neurodegeneration in motor, cognitive and ocular motor networks at cortical and subcortical foci, leading to diverse yet overlapping clinical syndromes. To advance understanding of phenotypic heterogeneity in PSP, it is essential to consider data-driven approaches to clinical neuroimaging analyses.

15.
Med Image Anal ; 97: 103254, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38968908

ABSTRACT

The present standard of care for unresectable liver cancer is transarterial chemoembolization (TACE), which involves using chemotherapeutic particles to selectively embolize the arteries supplying hepatic tumors. Accurate volumetric identification of intricate fine vascularity is crucial for selective embolization. Three-dimensional imaging, particularly cone-beam CT (CBCT), aids in visualization and targeting of small vessels in such highly variable anatomy, but long image acquisition time results in intra-scan patient motion, which distorts vascular structures and tissue boundaries. To improve clarity of vascular anatomy and intra-procedural utility, this work proposes a targeted motion estimation and compensation framework that removes the need for any prior information or external tracking and for user interaction. Motion estimation is performed in two stages: (i) a target identification stage that segments arteries and catheters in the projection domain using a multi-view convolutional neural network to construct a coarse 3D vascular mask; and (ii) a targeted motion estimation stage that iteratively solves for the time-varying motion field via optimization of a vessel-enhancing objective function computed over the target vascular mask. The vessel-enhancing objective is derived through eigenvalues of the local image Hessian to emphasize bright tubular structures. Motion compensation is achieved via spatial transformer operators that apply time-dependent deformations to partial angle reconstructions, allowing efficient minimization via gradient backpropagation. The framework was trained and evaluated in anatomically realistic simulated motion-corrupted CBCTs mimicking TACE of hepatic tumors, at intermediate (3.0 mm) and large (6.0 mm) motion magnitudes. Motion compensation substantially improved median vascular DICE score (from 0.30 to 0.59 for large motion), image SSIM (from 0.77 to 0.93 for large motion), and vessel sharpness (0.189 mm-1 to 0.233 mm-1 for large motion) in simulated cases. Motion compensation also demonstrated increased vessel sharpness (0.188 mm-1 before to 0.205 mm-1 after) and reconstructed vessel length (median increased from 37.37 to 41.00 mm) on a clinical interventional CBCT. The proposed anatomy-aware motion compensation framework presented a promising approach for improving the utility of CBCT for intra-procedural vascular imaging, facilitating selective embolization procedures.


Subject(s)
Cone-Beam Computed Tomography , Imaging, Three-Dimensional , Liver Neoplasms , Cone-Beam Computed Tomography/methods , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Liver Neoplasms/blood supply , Imaging, Three-Dimensional/methods , Motion , Chemoembolization, Therapeutic/methods , Radiography, Interventional/methods , Algorithms , Movement , Neural Networks, Computer
16.
Sci Transl Med ; 16(757): eado8076, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39047115

ABSTRACT

[18F]-Flortaucipir positron emission tomography (PET) is considered a good biomarker of Alzheimer's disease. However, it is unknown how flortaucipir is associated with the distribution of tau across brain regions and how these associations are influenced by amyloid-ß. It is also unclear whether flortaucipir can detect tau in definite primary age-related tauopathy (PART). We identified 248 individuals at Mayo Clinic who had undergone [18F]-flortaucipir PET during life, had died, and had undergone an autopsy, 239 cases of which also had amyloid-ß PET. We assessed nonlinear relationships between flortaucipir uptake in nine medial temporal and cortical regions, Braak tau stage, and Thal amyloid-ß phase using generalized additive models. We found that flortaucipir uptake was greater with increasing tau stage in all regions. Increased uptake at low tau stages in medial temporal regions was only observed in cases with a high amyloid-ß phase. Flortaucipir uptake linearly increased with the amyloid-ß phase in medial temporal and cortical regions. The highest flortaucipir uptake occurred with high Alzheimer's disease neuropathologic change (ADNC) scores, followed by low-intermediate ADNC scores, then PART, with the entorhinal cortex providing the best differentiation between groups. Flortaucipir PET had limited ability to detect PART, and imaging-defined PART did not correspond with pathologically defined PART. In summary, spatial patterns of flortaucipir mirrored the histopathological tau distribution, were influenced by the amyloid-ß phase, and were useful for distinguishing different ADNC scores and PART.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Carbolines , Positron-Emission Tomography , Tauopathies , tau Proteins , Humans , Positron-Emission Tomography/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , tau Proteins/metabolism , Carbolines/metabolism , Amyloid beta-Peptides/metabolism , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Tauopathies/pathology , Aged , Female , Male , Aged, 80 and over , Middle Aged , Brain/metabolism , Brain/diagnostic imaging , Brain/pathology
17.
medRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38947004

ABSTRACT

Plasma p-tau217 and Tau-PET are strong prognostic biomarkers in Alzheimer's disease (AD), but their relative performance in predicting future cognitive decline among cognitively unimpaired (CU) individuals is unclear. In this head-to-head comparison study including 9 cohorts and 1534 individuals, we found that plasma p-tau217 and medial temporal lobe Tau-PET signal showed similar associations with cognitive decline on a global cognitive composite test (R2 PET=0.32 vs R2 PLASMA=0.32, pdifference=0.812) and with progression to mild cognitive impairment (Hazard ratio[HR]PET=1.56[1.43-1.70] vs HRPLASMA=1.63[1.50-1.77], pdifference=0.627). Combined plasma and PET models were superior to the single biomarker models (R2=0.36, p<0.01). Furthermore, sequential selection using plasma p-tau217 and then Tau-PET reduced the number of participants required for a clinical trial by 94%, compared to a 75% reduction when using plasma p-tau217 alone. We conclude that plasma p-tau217 and Tau-PET showed similar performance for predicting future cognitive decline in CU individuals, and their sequential use (i.e., plasma p-tau217 followed by Tau-PET in a subset with high plasma p-tau217) is useful for screening in clinical trials in preclinical AD.

18.
Abdom Radiol (NY) ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951233

ABSTRACT

PURPOSE: To describe residual arterial supply to the stomach after bariatric surgery via a systematic arterial-phase CT assessment approach that can aid in diagnosis and treatment of postoperative complications and facilitate planning for future procedures. METHODS: Arterial-phase CT of 46 patients who underwent Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) at 3 academic institutions were retrospectively reviewed to assess patency of left gastric artery (LGA), right gastric artery (RGA), gastroepiploic artery (GEA), and left inferior phrenic artery (LIPA) and presence of gastric perforators. RESULTS: In 25 RYGB and 21 SG patients, mean diameters were LGA 2.2 ± 0.4 mm, RGA 1.6 ± 0.5 mm, and GEA 1.7 ± 0.4 mm. On RYGB scans, all LGAs, RGAs, and 24/25 (96%) of GEAs were identified. Excellent to good patency was seen in 20/25 (80%) LGAs, 21/25 (84%) RGAs, and 23/24 (96%) GEAs. On SG scans, all LGAs, 18/21 (86%) of RGAs, and 20/21 (95%) GEAs were identified. Excellent to good patency was seen in 17/21 (81%) LGAs, 15/18 (83%) RGAs, and 20/20 (100%) GEAs. In terms of gastric perforators, LGA supply was seen on 23/25 (92%) of RYGB and 17/17 (100%) of SG scans. RGA supply was seen on 13/21 (62%) RYGB and 9/18 (50%) SG scans. GEA supply was seen on 19/23 (83%) RYGB scans. No gastric supply via GEA was seen on SG scans. CONCLUSION: In this study, arterial supply to the stomach through the LGA was consistently identified in all RYGB and SG cases, indicating an uncomplicated surgical approach with regard to preserving the LGA. Dedicated CT angiography protocol or catheter-directed angiography is recommended for accurate and comprehensive assessment of the gastric blood supply, particularly before surgical re-intervention.

19.
Alzheimers Dement ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041435

ABSTRACT

INTRODUCTION: Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis. METHODS: Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data. JPM was compared to a linear regression approach analogous to the one used in the amyloid PET Centiloid scale. RESULTS: A strong linear relationship was observed between CTR values across brain regions. Using the JPM approach, CTR estimates were similar to, but more accurate than, those derived using the linear regression approach. DISCUSSION: Preliminary findings using the JPM support the development and adoption of a universal scale for tau-PET quantification. HIGHLIGHTS: Tested a novel joint propagation model (JPM) to harmonize quantification of tau PET. Units of common scale are termed "CenTauRs". Tested a Centiloid-like linear regression approach. Using five cohorts with head-to-head tau PET, JPM outperformed linearregressionbased approach. Strong linear relationship was observed between CenTauRs values across brain regions.

20.
J Nucl Med ; 65(9): 1473-1480, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39054278

ABSTRACT

Alzheimer disease (AD) exhibits spatially heterogeneous 3- or 4-repeat tau deposition across participants. Our overall goal was to develop an automated method to quantify the heterogeneous burden of tau deposition into a single number that would be clinically useful. Methods: We used tau PET scans from 3 independent cohorts: the Mayo Clinic Study of Aging and Alzheimer's Disease Research Center (Mayo, n = 1,290), the Alzheimer's Disease Neuroimaging Initiative (ADNI, n = 831), and the Open Access Series of Imaging Studies (OASIS-3, n = 430). A machine learning binary classification model was trained on Mayo data and validated on ADNI and OASIS-3 with the goal of predicting visual tau positivity (as determined by 3 raters following Food and Drug Administration criteria for 18F-flortaucipir). The machine learning model used region-specific SUV ratios scaled to cerebellar crus uptake. We estimated feature contributions based on an artificial intelligence-explainable method (Shapley additive explanations) and formulated a global tau summary measure, Tau Heterogeneity Evaluation in Alzheimer's Disease (THETA) score, using SUV ratios and Shapley additive explanations for each participant. We compared the performance of THETA with that of commonly used meta-regions of interest (ROIs) using the Mini-Mental State Examination, the Clinical Dementia Rating-Sum of Boxes, clinical diagnosis, and histopathologic staging. Results: The model achieved a balanced accuracy of 95% on the Mayo test set and at least 87% on the validation sets. It classified tau-positive and -negative participants with an AUC of 1.00, 0.96, and 0.94 on the Mayo, ADNI, and OASIS-3 cohorts, respectively. Across all cohorts, THETA showed a better correlation with the Mini-Mental State Examination and the Clinical Dementia Rating-Sum of Boxes (ρ ≥ 0.45, P < 0.05) than did meta-ROIs (ρ < 0.44, P < 0.05) and discriminated between participants who were cognitively unimpaired and those who had mild cognitive impairment with an effect size of 10.09, compared with an effect size of 3.08 for meta-ROIs. Conclusion: Our proposed approach identifies positive tau PET scans and provides a quantitative summary measure, THETA, that effectively captures heterogeneous tau deposition observed in AD. The application of THETA for quantifying tau PET in AD exhibits great potential.


Subject(s)
Alzheimer Disease , Machine Learning , Positron-Emission Tomography , tau Proteins , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Humans , tau Proteins/metabolism , Female , Male , Aged , Image Processing, Computer-Assisted , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL