Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nature ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38925148

ABSTRACT

Pre-mRNA splicing requires the assembly, remodeling, and disassembly of the multi-megadalton ribonucleoprotein complex called the spliceosome1. Recent studies have shed light on spliceosome assembly and remodeling for catalysis2-6, but the mechanism of disassembly remains unclear. Here, we report 2.6 to 3.2 Å resolution cryo-electron microscopy structures of nematode and human terminal intron-lariat spliceosomes along with biochemical and genetic data. Our results uncover how four disassembly factors and the conserved RNA helicase DHX15 initiate spliceosome disassembly. The disassembly factors probe large inner and outer spliceosome surfaces to detect the release of ligated mRNA. Two of these factors, TFIP11 and C19L1, and three general spliceosome subunits, SYF1, SYF2 and SDE2, then dock and activate DHX15 on the catalytic U6 snRNA to initiate disassembly. U6 thus controls both the start5 and end of pre-mRNA splicing. Taken together, our results explain the molecular basis of canonical spliceosome disassembly and provide a framework to understand general spliceosomal RNA helicase control and the discard of aberrant spliceosomes.

2.
Euro Surveill ; 29(23)2024 Jun.
Article in English | MEDLINE | ID: mdl-38847119

ABSTRACT

BackgroundThe COVID-19 pandemic was largely driven by genetic mutations of SARS-CoV-2, leading in some instances to enhanced infectiousness of the virus or its capacity to evade the host immune system. To closely monitor SARS-CoV-2 evolution and resulting variants at genomic-level, an innovative pipeline termed SARSeq was developed in Austria.AimWe discuss technical aspects of the SARSeq pipeline, describe its performance and present noteworthy results it enabled during the pandemic in Austria.MethodsThe SARSeq pipeline was set up as a collaboration between private and public clinical diagnostic laboratories, a public health agency, and an academic institution. Representative SARS-CoV-2 positive specimens from each of the nine Austrian provinces were obtained from SARS-CoV-2 testing laboratories and processed centrally in an academic setting for S-gene sequencing and analysis.ResultsSARS-CoV-2 sequences from up to 2,880 cases weekly resulted in 222,784 characterised case samples in January 2021-March 2023. Consequently, Austria delivered the fourth densest genomic surveillance worldwide in a very resource-efficient manner. While most SARS-CoV-2 variants during the study showed comparable kinetic behaviour in all of Austria, some, like Beta, had a more focused spread. This highlighted multifaceted aspects of local population-level acquired immunity. The nationwide surveillance system enabled reliable nowcasting. Measured early growth kinetics of variants were predictive of later incidence peaks.ConclusionWith low automation, labour, and cost requirements, SARSeq is adaptable to monitor other pathogens and advantageous even for resource-limited countries. This multiplexed genomic surveillance system has potential as a rapid response tool for future emerging threats.


Subject(s)
COVID-19 , Genome, Viral , SARS-CoV-2 , Humans , Austria/epidemiology , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , COVID-19/diagnosis , Mutation , Genomics/methods , Pandemics , Evolution, Molecular , Whole Genome Sequencing/methods
3.
EMBO J ; 43(12): 2506-2525, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38689024

ABSTRACT

Many microRNAs (miRNAs) are expressed with high spatiotemporal specificity during organismal development, with some being limited to rare cell types, often embedded in complex tissues. Yet, most miRNA profiling efforts remain at the tissue and organ levels. To overcome challenges in accessing the microRNomes from tissue-embedded cells, we had previously developed mime-seq (miRNome by methylation-dependent sequencing), a technique in which cell-specific miRNA methylation in C. elegans and Drosophila enabled chemo-selective sequencing without the need for cell sorting or biochemical purification. Here, we present mime-seq 2.0 for profiling miRNAs from specific mouse cell types. We engineered a chimeric RNA methyltransferase that is tethered to Argonaute protein and efficiently methylates miRNAs at their 3'-terminal 2'-OH in mouse and human cell lines. We also generated a transgenic mouse for conditional expression of this methyltransferase, which can be used to direct methylation of miRNAs in a cell type of choice. We validated the use of this mouse model by profiling miRNAs from B cells and bone marrow plasma cells.


Subject(s)
MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Humans , Mice, Transgenic , Methylation , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Sequence Analysis, RNA/methods , Methyltransferases/genetics , Methyltransferases/metabolism , Cell Line , B-Lymphocytes/metabolism
4.
Development ; 150(19)2023 10 01.
Article in English | MEDLINE | ID: mdl-37791585

ABSTRACT

The Jacques Monod Conference on 'Growth and regeneration during development and aging' was organized by Claude Desplan and Allison Bardin in May 2023. The conference took place in Roscoff, France, where participants shared recent conceptual advances under the general motto that developmental processes do not end with embryogenesis. The meeting covered various aspects of how development relates to fitness, regeneration and aging across a refreshing diversity of evolutionarily distant organisms.


Subject(s)
Aging , Love , Humans , France
5.
Nat Commun ; 14(1): 1617, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959185

ABSTRACT

Folate is an essential vitamin for vertebrate embryo development. Methotrexate (MTX) is a folate antagonist that is widely prescribed for autoimmune diseases, blood and solid organ malignancies, and dermatologic diseases. Although it is highly contraindicated for pregnant women, because it is associated with an increased risk of multiple birth defects, the effect of paternal MTX exposure on their offspring has been largely unexplored. Here, we found MTX treatment of adult medaka male fish (Oryzias latipes) causes cranial cartilage defects in their offspring. Small non-coding RNA (sncRNAs) sequencing in the sperm of MTX treated males identify differential expression of a subset of tRNAs, with higher abundance for specific 5' tRNA halves. Sperm RNA methylation analysis on MTX treated males shows that m5C is the most abundant and differential modification found in RNAs ranging in size from 50 to 90 nucleotides, predominantly tRNAs, and that it correlates with greater testicular Dnmt2 methyltransferase expression. Injection of sperm small RNA fractions from MTX-treated males into normal fertilized eggs generated cranial cartilage defects in the offspring. Overall, our data suggest that paternal MTX exposure alters sperm sncRNAs expression and modifications that may contribute to developmental defects in their offspring.


Subject(s)
Methotrexate , RNA, Small Untranslated , Animals , Male , Pregnancy , Humans , Female , Methotrexate/adverse effects , Methotrexate/metabolism , Semen , Spermatozoa/metabolism , Folic Acid/metabolism , RNA, Small Untranslated/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism
6.
Sci Adv ; 7(42): eabh1434, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34652942

ABSTRACT

Muscle function requires unique structural and metabolic adaptations that can render muscle cells selectively vulnerable, with mutations in some ubiquitously expressed genes causing myopathies but sparing other tissues. We uncovered a muscle cell vulnerability by studying miR-1, a deeply conserved, muscle-specific microRNA whose ablation causes various muscle defects. Using Caenorhabditis elegans, we found that miR-1 represses multiple subunits of the ubiquitous vacuolar adenosine triphosphatase (V-ATPase) complex, which is essential for internal compartment acidification and metabolic signaling. V-ATPase subunits are predicted miR-1 targets in animals ranging from C. elegans to humans, and we experimentally validated this in Drosophila. Unexpectedly, up-regulation of V-ATPase subunits upon miR-1 deletion causes reduced V-ATPase function due to defects in complex assembly. These results reveal V-ATPase assembly as a conserved muscle cell vulnerability and support a previously unknown role for microRNAs in the regulation of protein complexes.

7.
Sci Immunol ; 6(61)2021 07 23.
Article in English | MEDLINE | ID: mdl-34301800

ABSTRACT

The transcription factor Pax5 controls B cell development, but its role in mature B cells is largely enigmatic. Here, we demonstrated that the loss of Pax5 by conditional mutagenesis in peripheral B lymphocytes led to the strong reduction of B-1a, marginal zone (MZ), and germinal center (GC) B cells as well as plasma cells. Follicular (FO) B cells tolerated the loss of Pax5 but had a shortened half-life. The Pax5-deficient FO B cells failed to proliferate upon B cell receptor or Toll-like receptor stimulation due to impaired PI3K-AKT signaling, which was caused by increased expression of PTEN, a negative regulator of the PI3K pathway. Pax5 restrained PTEN protein expression at the posttranscriptional level, likely involving Pten-targeting microRNAs. Additional PTEN loss in Pten,Pax5 double-mutant mice rescued FO B cell numbers and the development of MZ B cells but did not restore GC B cell formation. Hence, the posttranscriptional down-regulation of PTEN expression is an important function of Pax5 that facilitates the differentiation and survival of mature B cells, thereby promoting humoral immunity.


Subject(s)
B-Lymphocytes/immunology , PAX5 Transcription Factor/immunology , PTEN Phosphohydrolase/immunology , Phosphatidylinositol 3-Kinases/immunology , Animals , Cell Differentiation , Down-Regulation , Female , Male , Mice, Transgenic , PAX5 Transcription Factor/genetics , PTEN Phosphohydrolase/genetics , Receptors, Antigen, B-Cell/immunology , Signal Transduction , Toll-Like Receptors/immunology
8.
Nat Commun ; 12(1): 3132, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035246

ABSTRACT

The COVID-19 pandemic has demonstrated the need for massively-parallel, cost-effective tests monitoring viral spread. Here we present SARSeq, saliva analysis by RNA sequencing, a method to detect SARS-CoV-2 and other respiratory viruses on tens of thousands of samples in parallel. SARSeq relies on next generation sequencing of multiple amplicons generated in a multiplexed RT-PCR reaction. Two-dimensional, unique dual indexing, using four indices per sample, enables unambiguous and scalable assignment of reads to individual samples. We calibrate SARSeq on SARS-CoV-2 synthetic RNA, virions, and hundreds of human samples of various types. Robustness and sensitivity were virtually identical to quantitative RT-PCR. Double-blinded benchmarking to gold standard quantitative-RT-PCR performed by human diagnostics laboratories confirms this high sensitivity. SARSeq can be used to detect Influenza A and B viruses and human rhinovirus in parallel, and can be expanded for detection of other pathogens. Thus, SARSeq is ideally suited for differential diagnostic of infections during a pandemic.


Subject(s)
Clinical Laboratory Techniques , High-Throughput Screening Assays , Respiratory Tract Infections/diagnosis , Viruses/isolation & purification , COVID-19/diagnosis , Diagnosis, Differential , High-Throughput Nucleotide Sequencing , Humans , Polymerase Chain Reaction , RNA, Viral/genetics , Respiratory Tract Infections/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Saliva/virology , Sensitivity and Specificity , Viral Proteins/genetics , Viruses/classification , Viruses/genetics
9.
Curr Top Dev Biol ; 144: 45-89, 2021.
Article in English | MEDLINE | ID: mdl-33992161

ABSTRACT

A diversity of gene regulatory mechanisms drives the changes in gene expression required for animal development. Here, we discuss the developmental roles of a class of gene regulatory factors composed of a core protein subunit of the Argonaute family and a 21-26-nucleotide RNA cofactor. These represent ancient regulatory complexes, originally evolved to repress genomic parasites such as transposons, viruses and retroviruses. However, over the course of evolution, small RNA-guided pathways have expanded and diversified, and they play multiple roles across all eukaryotes. Pertinent to this review, Argonaute and small RNA-mediated regulation has acquired numerous functions that affect all aspects of animal life. The regulatory function is provided by the Argonaute protein and its interactors, while the small RNA provides target specificity, guiding the Argonaute to a complementary RNA. C. elegans has 19 different, functional Argonautes, defining distinct yet interconnected pathways. Each Argonaute binds a relatively well-defined class of small RNA with distinct molecular properties. A broad classification of animal small RNA pathways distinguishes between two groups: (i) the microRNA pathway is involved in repressing relatively specific endogenous genes and (ii) the other small RNA pathways, which effectively act as a genomic immune system to primarily repress expression of foreign or "non-self" RNA while maintaining correct endogenous gene expression. microRNAs play prominent direct roles in all developmental stages, adult physiology and lifespan. The other small RNA pathways act primarily in the germline, but their impact extends far beyond, into embryogenesis and adult physiology, and even to subsequent generations. Here, we review the mechanisms and developmental functions of the diverse small RNA pathways of C. elegans.


Subject(s)
Caenorhabditis elegans , RNA , Animals , Caenorhabditis elegans/genetics , Genomics
10.
Dev Cell ; 55(4): 483-499.e7, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33002421

ABSTRACT

Combinatorial action of transcription factors (TFs) with partially overlapping expression is a widespread strategy to generate novel gene-expression patterns and, thus, cellular diversity. Known mechanisms underlying combinatorial activity require co-expression of TFs within the same cell. Here, we describe the mechanism by which two TFs that are never co-expressed generate a new, intersectional expression pattern in C. elegans embryos: lineage-specific priming of a gene by a transiently expressed TF generates a unique intersection with a second TF acting on the same gene four cell divisions later; the second TF is expressed in multiple cells but only activates transcription in those where priming occurred. Early induction of active transcription is necessary and sufficient to establish a competent state, maintained by broadly expressed regulators in the absence of the initial trigger. We uncover additional cells diversified through this mechanism. Our findings define a mechanism for combinatorial TF activity with important implications for generation of cell-type diversity.


Subject(s)
Caenorhabditis elegans/metabolism , Transcription Factors/metabolism , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/embryology , Caenorhabditis elegans Proteins/metabolism , Cell Lineage , Embryo, Nonmammalian/metabolism , Gene Expression Regulation , Genetic Loci , Neurons/metabolism , Protein Binding , Time Factors , Transcription, Genetic
11.
Curr Biol ; 30(24): 5058-5065.e5, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33125867

ABSTRACT

MicroRNAs (miRNAs) are a class of post-transcriptional repressors with diverse roles in animal development and physiology [1]. The Microprocessor complex, composed of Drosha and Pasha/DGCR8, is necessary for the biogenesis of all canonical miRNAs and essential for the early stages of animal embryogenesis [2-8]. However, the cause for this requirement is largely unknown. Animals often express hundreds of miRNAs, and it remains unclear whether the Microprocessor is required to produce one or few essential miRNAs or many individually non-essential miRNAs. Additionally, both Drosha and Pasha/DGCR8 bind and cleave a variety of non-miRNA substrates [9-15], and it is unknown whether these activities account for the Microprocessor's essential requirement. To distinguish between these possibilities, we developed a system in C. elegans to stringently deplete embryos of Microprocessor activity. Using a combination of auxin-inducible degradation (AID) and RNA interference (RNAi), we achieved Drosha and Pasha/DGCR8 depletion starting in the maternal germline, resulting in Microprocessor and miRNA-depleted embryos, which fail to undergo morphogenesis or form organs. Using a Microprocessor-bypass strategy, we show that this early embryonic arrest is rescued by the addition of just two miRNAs, one miR-35 and one miR-51 family member, resulting in morphologically normal larvae. Thus, just two out of ∼150 canonical miRNAs are sufficient for morphogenesis and organogenesis, and the processing of these miRNAs accounts for the essential requirement for Drosha and Pasha/DGCR8 during the early stages of C. elegans embryonic development. VIDEO ABSTRACT.


Subject(s)
Caenorhabditis elegans/growth & development , Gene Expression Regulation, Developmental , MicroRNAs/metabolism , Organogenesis/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Knockdown Techniques , Ribonuclease III/genetics , Ribonuclease III/metabolism
12.
Nat Metab ; 2(1): 126, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32694680

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Front Cell Dev Biol ; 8: 409, 2020.
Article in English | MEDLINE | ID: mdl-32582699

ABSTRACT

MicroRNAs (miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression in diverse biological contexts. The emergence of small RNA-mediated gene silencing preceded the onset of multicellularity and was followed by a drastic expansion of the miRNA repertoire in conjunction with the evolution of complexity in the plant and animal kingdoms. Along this process, miRNAs became an essential feature of animal development, as no higher metazoan lineage tolerated loss of miRNAs or their associated protein machinery. In fact, ablation of the miRNA biogenesis machinery or the effector silencing factors results in severe embryogenesis defects in every animal studied. In this review, we summarize recent mechanistic insight into miRNA biogenesis and function, while emphasizing features that have enabled multicellular organisms to harness the potential of this broad class of repressors. We first discuss how different mechanisms of regulation of miRNA biogenesis are used, not only to generate spatio-temporal specificity of miRNA production within an animal, but also to achieve the necessary levels and dynamics of expression. We then explore how evolution of the mechanism for small RNA-mediated repression resulted in a diversity of silencing complexes that cause different molecular effects on their targets. Multicellular organisms have taken advantage of this variability in the outcome of miRNA-mediated repression, with differential use in particular cell types or even distinct subcellular compartments. Finally, we present an overview of how the animal miRNA repertoire has evolved and diversified, emphasizing the emergence of miRNA families and the biological implications of miRNA sequence diversification. Overall, focusing on selected animal models and through the lens of evolution, we highlight canonical mechanisms in miRNA biology and their variations, providing updated insight that will ultimately help us understand the contribution of miRNAs to the development and physiology of multicellular organisms.

14.
Elife ; 82019 09 17.
Article in English | MEDLINE | ID: mdl-31526477

ABSTRACT

The nematodes C. elegans and P. pacificus populate diverse habitats and display distinct patterns of behavior. To understand how their nervous systems have diverged, we undertook a detailed examination of the neuroanatomy of the chemosensory system of P. pacificus. Using independent features such as cell body position, axon projections and lipophilic dye uptake, we have assigned homologies between the amphid neurons, their first-layer interneurons, and several internal receptor neurons of P. pacificus and C. elegans. We found that neuronal number and soma position are highly conserved. However, the morphological elaborations of several amphid cilia are different between them, most notably in the absence of 'winged' cilia morphology in P. pacificus. We established a synaptic wiring diagram of amphid sensory neurons and amphid interneurons in P. pacificus and found striking patterns of conservation and divergence in connectivity relative to C. elegans, but very little changes in relative neighborhood of neuronal processes. These findings demonstrate the existence of several constraints in patterning the nervous system and suggest that major substrates for evolutionary novelty lie in the alterations of dendritic structures and synaptic connectivity.


Subject(s)
Interneurons/cytology , Nerve Net/anatomy & histology , Nervous System/anatomy & histology , Rhabditida/anatomy & histology , Sensory Receptor Cells/cytology , Animals
15.
Nat Metab ; 1(3): 350-359, 2019 03.
Article in English | MEDLINE | ID: mdl-31535080

ABSTRACT

The maintenance of proteostasis is crucial for any organism to survive and reproduce in an ever-changing environment, but its efficiency declines with age1. Posttranscriptional regulators such as microRNAs control protein translation of target mRNAs with major consequences for development, physiology, and longevity2,3. Here we show that food odor stimulates organismal proteostasis and promotes longevity in Caenorhabditis elegans through mir-71-mediated inhibition of tir-1 mRNA stability in olfactory AWC neurons. Screening a collection of microRNAs that control aging3 we find that miRNA mir-71 regulates lifespan and promotes ubiquitin-dependent protein turnover, particularly in the intestine. We show that mir-71 directly inhibits the toll receptor domain protein TIR-1 in AWC olfactory neurons and that disruption of mir-71/tir-1 or loss of AWC olfactory neurons eliminates the influence of food source on proteostasis. mir-71-mediated regulation of TIR-1 controls chemotactic behavior and is regulated by odor. Thus, odor perception influences cell-type specific miRNA-target interaction to regulate organismal proteostasis and longevity. We anticipate that the proposed mechanism of food perception will stimulate further research on neuroendocrine brain-to-gut communication and may open the possibility for therapeutic interventions to improve proteostasis and organismal health via the sense of smell, with potential implication for obesity, diabetes and aging.


Subject(s)
Longevity/physiology , MicroRNAs/metabolism , Proteostasis/physiology , Signal Transduction/physiology , Smell/physiology , Animals , Caenorhabditis elegans/physiology
16.
Nat Methods ; 15(4): 283-289, 2018 04.
Article in English | MEDLINE | ID: mdl-29481550

ABSTRACT

MicroRNAs (miRNAs) play an essential role in the post-transcriptional regulation of animal development and physiology. However, in vivo studies aimed at linking miRNA function to the biology of distinct cell types within complex tissues remain challenging, partly because in vivo miRNA-profiling methods lack cellular resolution. We report microRNome by methylation-dependent sequencing (mime-seq), an in vivo enzymatic small-RNA-tagging approach that enables high-throughput sequencing of tissue- and cell-type-specific miRNAs in animals. The method combines cell-type-specific 3'-terminal 2'-O-methylation of animal miRNAs by a genetically encoded, plant-specific methyltransferase (HEN1), with chemoselective small-RNA cloning and high-throughput sequencing. We show that mime-seq uncovers the miRNomes of specific cells within Caenorhabditis elegans and Drosophila at unprecedented specificity and sensitivity, enabling miRNA profiling with single-cell resolution in whole animals. Mime-seq overcomes current challenges in cell-type-specific small-RNA profiling and provides novel entry points for understanding the function of miRNAs in spatially restricted physiological settings.


Subject(s)
Caenorhabditis elegans/genetics , Drosophila/genetics , MicroRNAs/genetics , Sequence Analysis, RNA/methods , Animals , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cloning, Molecular , Neurons/metabolism
17.
Development ; 144(14): 2548-2559, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28720652

ABSTRACT

MicroRNAs (miRNAs) contribute to the progressive changes in gene expression that occur during development. The combined loss of all miRNAs results in embryonic lethality in all animals analyzed, illustrating the crucial role that miRNAs play collectively. However, although the loss of some individual miRNAs also results in severe developmental defects, the roles of many other miRNAs have been challenging to uncover. This has been mostly attributed to their proposed function as tuners of gene expression or providers of robustness. Here, we present a view of miRNAs in the context of development as a hierarchical and canalized series of gene regulatory networks. In this scheme, only a fraction of embryonic miRNAs act at the top of this hierarchy, with their loss resulting in broad developmental defects, whereas most other miRNAs are expressed with high cellular specificity and play roles at the periphery of development, affecting the terminal features of specialized cells. This view could help to shed new light on our understanding of miRNA function in development, disease and evolution.


Subject(s)
Gene Expression Regulation, Developmental , Gene Regulatory Networks , MicroRNAs/genetics , Animals , Apoptosis/genetics , Cell Communication/genetics , Cell Lineage/genetics , Cell Proliferation/genetics , Embryonic Development/genetics , Female , Male , MicroRNAs/classification , MicroRNAs/metabolism , Models, Genetic , Neurogenesis/genetics , RNA, Messenger, Stored/genetics , RNA, Messenger, Stored/metabolism
18.
Genes Dev ; 30(18): 2042-2047, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27688400

ABSTRACT

Two broad gene classes are distinguished within multicellular organisms: cell type-specific genes, which confer particular cellular properties, and ubiquitous genes that support general cellular functions. However, certain so-called ubiquitous genes show functionally relevant cell type-specific repression. How such repression is achieved is poorly understood. MicroRNAs (miRNAs) are repressors, many of which are expressed with high cell type specificity. Here we show that mir-791, expressed exclusively in the CO2-sensing neurons in Caenorhabditis elegans, represses two otherwise broadly expressed genes. This repression is necessary for normal neuronal function and behavior of the animals toward CO2 miRNA-mediated repression of broadly transcribed genes is a previously unappreciated strategy for cellular specialization.


Subject(s)
Behavior, Animal , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Gene Expression Regulation, Developmental , MicroRNAs/metabolism , Sensory Receptor Cells/metabolism , Animals , Avoidance Learning , Caenorhabditis elegans Proteins/genetics , Carbon Dioxide/metabolism , MicroRNAs/genetics
19.
Genes Dev ; 28(1): 34-43, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24361693

ABSTRACT

Left/right asymmetric features of animals are either randomly distributed on either the left or right side within a population ("antisymmetries") or found stereotypically on one particular side of an animal ("directional asymmetries"). Both types of asymmetries can be found in nervous systems, but whether the regulatory programs that establish these asymmetries share any mechanistic features is not known. We describe here an unprecedented molecular link between these two types of asymmetries in Caenorhabditis elegans. The zinc finger transcription factor die-1 is expressed in a directionally asymmetric manner in the gustatory neuron pair ASE left (ASEL) and ASE right (ASER), while it is expressed in an antisymmetric manner in the olfactory neuron pair AWC left (AWCL) and AWC right (AWCR). Asymmetric die-1 expression is controlled in a fundamentally distinct manner in these two neuron pairs. Importantly, asymmetric die-1 expression controls the directionally asymmetric expression of gustatory receptor proteins in the ASE neurons and the antisymmetric expression of olfactory receptor proteins in the AWC neurons. These asymmetries serve to increase the ability of the animal to discriminate distinct chemosensory inputs.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Gene Expression Regulation, Developmental , Transcription Factors/metabolism , Animals , Body Patterning/genetics , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Neurons/cytology , Neurons/metabolism , Trans-Activators/metabolism , Transcription Factors/genetics
20.
Cell ; 151(6): 1229-42, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23201143

ABSTRACT

The mechanisms by which functional left/right asymmetry arises in morphologically symmetric nervous systems are poorly understood. Here, we provide a mechanistic framework for how functional asymmetry in a postmitotic neuron pair is specified in C. elegans. A key feature of this mechanism is a temporally separated, two-step activation of the lsy-6 miRNA locus. The lsy-6 locus is first "primed" by chromatin decompaction in the precursor for the left neuron, but not the right neuron, several divisions before the neurons are born. lsy-6 expression is then "boosted" to functionally relevant levels several divisions later in the mother of the left neuron, through the activity of a bilaterally expressed transcription factor that can only activate lsy-6 in the primed neuron. This study shows how cells can become committed during early developmental stages to execute a specific fate much later in development and provides a conceptual framework for understanding the generation of neuronal diversity.


Subject(s)
Body Patterning , Caenorhabditis elegans/embryology , Neurons/cytology , Animals , Base Sequence , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Cell Lineage , Embryo, Nonmammalian/metabolism , Gene Expression , MicroRNAs/metabolism , Neurons/metabolism , Receptors, Notch/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...