Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Sci Data ; 11(1): 328, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565538

ABSTRACT

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.


Subject(s)
Multiomics , Virus Diseases , Viruses , Animals , Humans , Mice , Gene Expression Profiling/methods , Metabolomics , Proteomics/methods , Virus Diseases/immunology , Host-Pathogen Interactions
2.
bioRxiv ; 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35132416

ABSTRACT

The emergence of SARS-CoV-2 variants that evade host immune responses has prolonged the COVID-19 pandemic. Thus, the development of an efficacious, variant-agnostic therapeutic for the treatment of early SARS-CoV-2 infection would help reduce global health and economic burdens. Visible light therapy has the potential to fill these gaps. In this study, visible blue light centered around 425 nm efficiently inactivated SARS-CoV-2 variants in cell-free suspensions and in a translationally relevant well-differentiated tissue model of the human large airway. Specifically, 425 nm light inactivated cell-free SARS-CoV-2 variants Alpha, Beta, Delta, Gamma, Lambda, and Omicron by up to 99.99% in a dose-dependent manner, while the monoclonal antibody bamlanivimab did not neutralize the Beta, Delta, and Gamma variants. Further, we observed that 425 nm light reduced virus binding to host ACE-2 receptor and limited viral entry to host cells in vitro . Further, the twice daily administration of 32 J/cm 2 of 425 nm light for three days reduced infectious SARS-CoV-2 Beta and Delta variants by >99.99% in human airway models when dosing began during the early stages of infection. In more established infections, logarithmic reductions of infectious Beta and Delta titers were observed using the same dosing regimen. Finally, we demonstrated that the 425 nm dosing regimen was well-tolerated by the large airway tissue model. Our results indicate that blue light therapy has the potential to lead to a well-tolerated and variant-agnostic countermeasure against COVID-19.

3.
Clin Transl Sci ; 15(5): 1291-1303, 2022 05.
Article in English | MEDLINE | ID: mdl-35137532

ABSTRACT

The RD-X19 is an investigational, handheld medical device precisely engineered to emit blue light through the oral cavity to target the oropharynx and surrounding tissues. At doses shown to be noncytotoxic in an in vitro three-dimensional human epithelial tissue model, the monochromatic visible light delivered by RD-X19 results in light-initiated expression of immune stimulating cytokines IL-1α and IL-1ß, with corresponding inhibition of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) replication. A single exposure of 425 nm blue light at 60 J/cm2 led to greater than 99% reductions against all SARS-CoV-2 strains tested in vitro, including the more transmissible (Alpha) and immune evasive (Beta) variants. These preclinical findings along with other studies led to a randomized, double-blind, sham-controlled early feasibility study using the investigational device as a treatment for outpatients with mild to moderate coronavirus disease 2019 (COVID-19). The study enrolled 31 subjects with a positive SARS-CoV-2 antigen test and at least two moderate COVID-19 signs and symptoms at baseline. Subjects were randomized 2:1 (RD-X19: sham) and treated twice daily for 4 days. Efficacy outcome measures included assessments of SARS-CoV-2 saliva viral load and clinical assessments of COVID-19. There were no local application site reactions and no device-related adverse events. At the end of the study (day 8), the mean change in log10 viral load was -3.29 for RD-X19 and -1.81 for sham, demonstrating a treatment benefit of -1.48 logs (95% confidence internal, -2.88 to -0.071, nominal p = 0.040). Among the clinical outcome measures, differences between RD-X19 and sham were also observed, with a 57-h reduction of median time to sustained resolution of COVID-19 signs and symptoms (log rank test, nominal p = 0.044).


Subject(s)
COVID-19 , Feasibility Studies , Humans , Outpatients , SARS-CoV-2 , Treatment Outcome , Viral Load
4.
Sci Rep ; 11(1): 20595, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663881

ABSTRACT

The delivery of safe, visible wavelengths of light can be an effective, pathogen-agnostic, countermeasure that would expand the current portfolio of SARS-CoV-2 intervention strategies beyond the conventional approaches of vaccine, antibody, and antiviral therapeutics. Employing custom biological light units, that incorporate optically engineered light-emitting diode (LED) arrays, we harnessed monochromatic wavelengths of light for uniform delivery across biological surfaces. We demonstrated that primary 3D human tracheal/bronchial-derived epithelial tissues tolerated high doses of a narrow spectral band of visible light centered at a peak wavelength of 425 nm. We extended these studies to Vero E6 cells to understand how light may influence the viability of a mammalian cell line conventionally used for assaying SARS-CoV-2. The exposure of single-cell monolayers of Vero E6 cells to similar doses of 425 nm blue light resulted in viabilities that were dependent on dose and cell density. Doses of 425 nm blue light that are well-tolerated by Vero E6 cells also inhibited infection and replication of cell-associated SARS-CoV-2 by > 99% 24 h post-infection after a single five-minute light exposure. Moreover, the 425 nm blue light inactivated cell-free betacoronaviruses including SARS-CoV-1, MERS-CoV, and SARS-CoV-2 up to 99.99% in a dose-dependent manner. Importantly, clinically applicable doses of 425 nm blue light dramatically inhibited SARS-CoV-2 infection and replication in primary human 3D tracheal/bronchial tissue. Safe doses of visible light should be considered part of the strategic portfolio for the development of SARS-CoV-2 therapeutic countermeasures to mitigate coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 Drug Treatment , COVID-19/prevention & control , Light , SARS-CoV-2 , Trachea/radiation effects , Virus Replication/radiation effects , Adult , Animals , Antiviral Agents/pharmacology , Bronchi , Calibration , Cell-Free System , Chlorocebus aethiops , Epithelium/pathology , Female , Humans , Respiratory Mucosa/radiation effects , Trachea/virology , Vero Cells
5.
BMC Bioinformatics ; 22(1): 287, 2021 May 29.
Article in English | MEDLINE | ID: mdl-34051754

ABSTRACT

BACKGROUND: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. RESULTS: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. CONCLUSIONS: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.


Subject(s)
Algorithms , Models, Biological , Genomics , Proteins
6.
Methods Mol Biol ; 2099: 137-159, 2020.
Article in English | MEDLINE | ID: mdl-31883094

ABSTRACT

Since 2012, monthly cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to cause severe respiratory disease that is fatal in ~35% of diagnosed individuals. The ongoing threat to global public health and the need for novel therapeutic countermeasures have driven the development of animal models that can reproducibly replicate the pathology associated with MERS-CoV in human infections. The inability of MERS-CoV to replicate in the respiratory tracts of mice, hamsters, and ferrets stymied initial attempts to generate small animal models. Identification of human dipeptidyl peptidase IV (hDPP4) as the receptor for MERS-CoV infection opened the door for genetic engineering of mice. Precise molecular engineering of mouse DPP4 (mDPP4) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology maintained inherent expression profiles, and limited MERS-CoV susceptibility to tissues that naturally express mDPP4, notably the lower respiratory tract wherein MERS-CoV elicits severe pulmonary pathology. Here, we describe the generation of the 288-330+/+ MERS-CoV mouse model in which mice were made susceptible to MERS-CoV by modifying two amino acids on mDPP4 (A288 and T330), and the use of adaptive evolution to generate novel MERS-CoV isolates that cause fatal respiratory disease. The 288-330+/+ mice are currently being used to evaluate novel drug, antibody, and vaccine therapeutic countermeasures for MERS-CoV. The chapter starts with a historical perspective on the emergence of MERS-CoV and animal models evaluated for MERS-CoV pathogenesis, and then outlines the development of the 288-330+/+ mouse model, assays for assessing a MERS-CoV pulmonary infection in a mouse model, and describes some of the challenges associated with using genetically engineered mice.


Subject(s)
Coronavirus Infections/virology , Dipeptidyl Peptidase 4/genetics , Disease Models, Animal , Mice/genetics , Middle East Respiratory Syndrome Coronavirus/physiology , Respiratory Distress Syndrome/virology , Animals , CRISPR-Cas Systems , Coronavirus Infections/pathology , Dipeptidyl Peptidase 4/metabolism , Disease Susceptibility , Female , Genetic Engineering , Humans , Lung/virology , Male , Mice, Inbred C57BL , Respiratory Distress Syndrome/pathology
7.
Nat Biotechnol ; 37(10): 1163-1173, 2019 10.
Article in English | MEDLINE | ID: mdl-31451733

ABSTRACT

A major limitation of current humanized mouse models is that they primarily enable the analysis of human-specific pathogens that infect hematopoietic cells. However, most human pathogens target other cell types, including epithelial, endothelial and mesenchymal cells. Here, we show that implantation of human lung tissue, which contains up to 40 cell types, including nonhematopoietic cells, into immunodeficient mice (lung-only mice) resulted in the development of a highly vascularized lung implant. We demonstrate that emerging and clinically relevant human pathogens such as Middle East respiratory syndrome coronavirus, Zika virus, respiratory syncytial virus and cytomegalovirus replicate in vivo in these lung implants. When incorporated into bone marrow/liver/thymus humanized mice, lung implants are repopulated with autologous human hematopoietic cells. We show robust antigen-specific humoral and T-cell responses following cytomegalovirus infection that control virus replication. Lung-only mice and bone marrow/liver/thymus-lung humanized mice substantially increase the number of human pathogens that can be studied in vivo, facilitating the in vivo testing of therapeutics.


Subject(s)
Coronavirus Infections/virology , Disease Models, Animal , Lung/physiology , Zika Virus Infection/virology , Animals , Antibodies, Viral , Antigen-Presenting Cells , Coronavirus Infections/immunology , Cytokines/genetics , Cytokines/metabolism , Cytomegalovirus/physiology , Female , Gene Expression Regulation , Humans , Immunohistochemistry , Male , Mice , Mice, SCID , Middle East Respiratory Syndrome Coronavirus/immunology , Tropism/immunology , Virus Replication , Zika Virus/immunology , Zika Virus Infection/immunology
9.
Cell ; 178(3): 748-761.e17, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31280962

ABSTRACT

Directed evolution, artificial selection toward designed objectives, is routinely used to develop new molecular tools and therapeutics. Successful directed molecular evolution campaigns repeatedly test diverse sequences with a designed selective pressure. Unicellular organisms and their viral pathogens are exceptional for this purpose and have been used for decades. However, many desirable targets of directed evolution perform poorly or unnaturally in unicellular backgrounds. Here, we present a system for facile directed evolution in mammalian cells. Using the RNA alphavirus Sindbis as a vector for heredity and diversity, we achieved 24-h selection cycles surpassing 10-3 mutations per base. Selection is achieved through genetically actuated sequences internal to the host cell, thus the system's name: viral evolution of genetically actuating sequences, or "VEGAS." Using VEGAS, we evolve transcription factors, GPCRs, and allosteric nanobodies toward functional signaling endpoints each in less than 1 weeks' time.


Subject(s)
Directed Molecular Evolution/methods , Allosteric Regulation , Amino Acid Sequence , Animals , Fluorescence Resonance Energy Transfer , Genetic Vectors/genetics , Genetic Vectors/metabolism , HEK293 Cells , Humans , Mutation , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Sequence Alignment , Sindbis Virus/genetics , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
10.
mSphere ; 3(6)2018 12 12.
Article in English | MEDLINE | ID: mdl-30541777

ABSTRACT

Single photon emission computed tomography (SPECT) is frequently used in oncology and cardiology to evaluate disease progression and/or treatment efficacy. Such technology allows for real-time evaluation of disease progression and when applied to studying infectious diseases may provide insight into pathogenesis. Insertion of a SPECT-compatible reporter gene into a virus may provide insight into mechanisms of pathogenesis and viral tropism. The human sodium iodide symporter (hNIS), a SPECT and positron emission tomography reporter gene, was inserted into Middle East respiratory syndrome coronavirus (MERS-CoV), a recently emerged virus that can cause severe respiratory disease and death in afflicted humans to obtain a quantifiable and sensitive marker for viral replication to further MERS-CoV animal model development. The recombinant virus was evaluated for fitness, stability, and reporter gene functionality. The recombinant and parental viruses demonstrated equal fitness in terms of peak titer and replication kinetics, were stable for up to six in vitro passages, and were functional. Further in vivo evaluation indicated variable stability, but resolution limits hampered in vivo functional evaluation. These data support the further development of hNIS for monitoring infection in animal models of viral disease.IMPORTANCE Advanced medical imaging such as single photon emission computed tomography with computed tomography (SPECT/CT) enhances fields such as oncology and cardiology. Application of SPECT/CT, magnetic resonance imaging, and positron emission tomography to infectious disease may enhance pathogenesis studies and provide alternate biomarkers of disease progression. The experiments described in this article focus on insertion of a SPECT/CT-compatible reporter gene into MERS-CoV to demonstrate that a functional SPECT/CT reporter gene can be inserted into a virus.


Subject(s)
Coronavirus Infections/pathology , Genes, Reporter , Middle East Respiratory Syndrome Coronavirus/growth & development , Single Photon Emission Computed Tomography Computed Tomography/methods , Symporters/metabolism , Animals , Chlorocebus aethiops , Disease Models, Animal , Genomic Instability , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/genetics , Mutagenesis, Insertional , Symporters/genetics , Vero Cells
11.
Sci Rep ; 8(1): 10727, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30013082

ABSTRACT

The recurrence of new human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) underscores the need for effective therapeutic countermeasures. Nonhuman primate models are considered the gold standard for preclinical evaluation of therapeutic countermeasures. However, MERS-CoV-induced severe respiratory disease in humans is associated with high viral loads in the lower respiratory tract, which may be difficult to achieve in nonhuman primate models. Considering this limitation, we wanted to ascertain the effectiveness of using a MERS-CoV infectious clone (icMERS-0) previously shown to replicate to higher titers than the wild-type EMC 2012 strain. We observed respiratory disease resulting from exposure to the icMERS-0 strain as measured by CT in rhesus monkeys with concomitant detection of virus antigen by immunohistochemistry. Overall, respiratory disease was mild and transient, resolving by day 30 post-infection. Although pulmonary disease was mild, these results demonstrate for the first time the utility of CT imaging to measure disease elicited by a MERS-CoV infectious clone system in nonhuman primate models.


Subject(s)
Coronavirus Infections/diagnosis , Lung/diagnostic imaging , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Animals , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Models, Animal , Humans , Image Processing, Computer-Assisted , Lung/pathology , Lung/virology , Macaca mulatta , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Middle East Respiratory Syndrome Coronavirus/physiology , RNA, Viral/isolation & purification , Severity of Illness Index , Tomography, X-Ray Computed , Viral Load/genetics , Virus Replication/genetics
12.
Mamm Genome ; 29(7-8): 367-383, 2018 08.
Article in English | MEDLINE | ID: mdl-30043100

ABSTRACT

The emergence of highly pathogenic human coronaviruses (hCoVs) in the last two decades has illuminated their potential to cause high morbidity and mortality in human populations and disrupt global economies. Global pandemic concerns stem from their high mortality rates, capacity for human-to-human spread by respiratory transmission, and complete lack of approved therapeutic countermeasures. Limiting disease may require the development of virus-directed and host-directed therapeutic strategies due to the acute etiology of hCoV infections. Therefore, understanding how hCoV-host interactions cause pathogenic outcomes relies upon mammalian models that closely recapitulate the pathogenesis of hCoVs in humans. Pragmatism has largely been the driving force underpinning mice as highly effective mammalian models for elucidating hCoV-host interactions that govern pathogenesis. Notably, tractable mouse genetics combined with hCoV reverse genetic systems has afforded the concomitant manipulation of virus and host genetics to evaluate virus-host interaction networks in disease. In addition to assessing etiologies of known hCoVs, mouse models have clinically predictive value as tools to appraise potential disease phenotypes associated with pre-emergent CoVs. Knowledge of CoV pathogenic potential before it crosses the species barrier into the human population provides a highly desirable preclinical platform for addressing global pathogen preparedness, an overarching directive of the World Health Organization. Although we recognize that results obtained in robust mouse models require evaluation in non-human primates, we focus this review on the current state of hCoV mouse models, their use as tractable complex genetic organisms for untangling complex hCoV-host interactions, and as pathogenesis models for preclinical evaluation of novel therapeutic interventions.


Subject(s)
Communicable Diseases, Emerging/virology , Coronavirus Infections/virology , Coronavirus/physiology , Host-Pathogen Interactions , Animals , Communicable Diseases, Emerging/drug therapy , Communicable Diseases, Emerging/genetics , Communicable Diseases, Emerging/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Disease Models, Animal , Disease Susceptibility , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Mice
13.
Virology ; 517: 98-107, 2018 04.
Article in English | MEDLINE | ID: mdl-29277291

ABSTRACT

We recently established a mouse model (288-330+/+) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 106 PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 103 and 105 PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10-1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease.


Subject(s)
Biological Evolution , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/physiology , Animals , Coronavirus Infections/pathology , Lung/virology , Mice , Organisms, Genetically Modified
14.
G3 (Bethesda) ; 8(2): 427-445, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29187420

ABSTRACT

Influenza A virus (IAV) is a respiratory pathogen that causes substantial morbidity and mortality during both seasonal and pandemic outbreaks. Infection outcomes in unexposed populations are affected by host genetics, but the host genetic architecture is not well understood. Here, we obtain a broad view of how heritable factors affect a mouse model of response to IAV infection using an 8 × 8 diallel of the eight inbred founder strains of the Collaborative Cross (CC). Expanding on a prior statistical framework for modeling treatment response in diallels, we explore how a range of heritable effects modify acute host response to IAV through 4 d postinfection. Heritable effects in aggregate explained ∼57% of the variance in IAV-induced weight loss. Much of this was attributable to a pattern of additive effects that became more prominent through day 4 postinfection and was consistent with previous reports of antiinfluenza myxovirus resistance 1 (Mx1) polymorphisms segregating between these strains; these additive effects largely recapitulated haplotype effects observed at the Mx1 locus in a previous study of the incipient CC, and are also replicated here in a CC recombinant intercross population. Genetic dominance of protective Mx1 haplotypes was observed to differ by subspecies of origin: relative to the domesticus null Mx1 allele, musculus acts dominantly whereas castaneus acts additively. After controlling for Mx1, heritable effects, though less distinct, accounted for ∼34% of the phenotypic variance. Implications for future mapping studies are discussed.


Subject(s)
Bayes Theorem , Genetic Predisposition to Disease/genetics , Myxovirus Resistance Proteins/genetics , Orthomyxoviridae Infections/genetics , Animals , Disease Models, Animal , Haplotypes , Humans , Influenza A virus/physiology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Inbred Strains , Orthomyxoviridae Infections/virology , Phenotype , Species Specificity
15.
mSphere ; 2(6)2017.
Article in English | MEDLINE | ID: mdl-29152578

ABSTRACT

Coronaviruses (CoVs) encode a mixture of highly conserved and novel genes, as well as genetic elements necessary for infection and pathogenesis, raising the possibility of common targets for attenuation and therapeutic design. In this study, we focused on highly conserved nonstructural protein 16 (NSP16), a viral 2'O-methyltransferase (2'O-MTase) that encodes critical functions in immune modulation and infection. Using reverse genetics, we disrupted a key motif in the conserved KDKE motif of Middle East respiratory syndrome CoV (MERS-CoV) NSP16 (D130A) and evaluated the effect on viral infection and pathogenesis. While the absence of 2'O-MTase activity had only a marginal impact on propagation and replication in Vero cells, dNSP16 mutant MERS-CoV demonstrated significant attenuation relative to the control both in primary human airway cell cultures and in vivo. Further examination indicated that dNSP16 mutant MERS-CoV had a type I interferon (IFN)-based attenuation and was partially restored in the absence of molecules of IFN-induced proteins with tetratricopeptide repeats. Importantly, the robust attenuation permitted the use of dNSP16 mutant MERS-CoV as a live attenuated vaccine platform protecting from a challenge with a mouse-adapted MERS-CoV strain. These studies demonstrate the importance of the conserved 2'O-MTase activity for CoV pathogenesis and highlight NSP16 as a conserved universal target for rapid live attenuated vaccine design in an expanding CoV outbreak setting. IMPORTANCE Coronavirus (CoV) emergence in both humans and livestock represents a significant threat to global public health, as evidenced by the sudden emergence of severe acute respiratory syndrome CoV (SARS-CoV), MERS-CoV, porcine epidemic diarrhea virus, and swine delta CoV in the 21st century. These studies describe an approach that effectively targets the highly conserved 2'O-MTase activity of CoVs for attenuation. With clear understanding of the IFN/IFIT (IFN-induced proteins with tetratricopeptide repeats)-based mechanism, NSP16 mutants provide a suitable target for a live attenuated vaccine platform, as well as therapeutic development for both current and future emergent CoV strains. Importantly, other approaches targeting other conserved pan-CoV functions have not yet proven effective against MERS-CoV, illustrating the broad applicability of targeting viral 2'O-MTase function across CoVs.

16.
mBio ; 8(4)2017 08 22.
Article in English | MEDLINE | ID: mdl-28830941

ABSTRACT

While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward.IMPORTANCE The initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Open Reading Frames , Virus Replication/genetics , Animals , Cell Line , Cells, Cultured , Coronavirus Infections/virology , Epithelial Cells/virology , Host-Pathogen Interactions , Humans , Inflammation , Interferons/genetics , Interferons/metabolism , Mice , Mutation , NF-kappa B/metabolism , Reverse Genetics , Signal Transduction
17.
Methods Mol Biol ; 1602: 59-81, 2017.
Article in English | MEDLINE | ID: mdl-28508214

ABSTRACT

Emergent and preemergent coronaviruses (CoVs) pose a global threat that requires immediate intervention. Rapid intervention necessitates the capacity to generate, grow, and genetically manipulate infectious CoVs in order to rapidly evaluate pathogenic mechanisms, host and tissue permissibility, and candidate antiviral therapeutic efficacy. CoVs encode the largest viral RNA genomes at about 28-32,000 nucleotides in length, and thereby complicate efficient engineering of the genome. Deconstructing the genome into manageable fragments affords the plasticity necessary to rapidly introduce targeted genetic changes in parallel and assort mutated fragments while maximizing genome stability over time. In this protocol we describe a well-developed reverse genetic platform strategy for CoVs that is comprised of partitioning the viral genome into 5-7 independent DNA fragments (depending on the CoV genome), each subcloned into a plasmid for increased stability and ease of genetic manipulation and amplification. Coronavirus genomes are conveniently partitioned by introducing type IIS or IIG restriction enzyme recognition sites that confer directional cloning. Since each restriction site leaves a unique overhang between adjoining fragments, reconstruction of the full-length genome can be achieved through a standard DNA ligation comprised of equal molar ratios of each fragment. Using this method, recombinant CoVs can be rapidly generated and used to investigate host range, gene function, pathogenesis, and candidate therapeutics for emerging and preemergent CoVs both in vitro and in vivo.


Subject(s)
Coronavirus Infections/virology , Coronavirus/genetics , Reverse Genetics , Animals , Chlorocebus aethiops , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Coronavirus Infections/transmission , DNA, Complementary , Gene Expression Regulation, Viral , Genetic Engineering , Genome, Viral , Humans , Plasmids/genetics , RNA, Viral , Recombination, Genetic , Reverse Genetics/methods , Transfection , Vero Cells
18.
Nat Microbiol ; 2: 16226, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27892925

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.


Subject(s)
Coronavirus Infections/complications , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Disease Models, Animal , Middle East Respiratory Syndrome Coronavirus/growth & development , Respiratory Distress Syndrome/pathology , Animals , Gene Editing , Mice , Mutant Proteins/genetics , Mutant Proteins/metabolism , Organisms, Genetically Modified , Receptors, Virus/genetics , Receptors, Virus/metabolism , Recombination, Genetic
20.
J Virol ; 89(8): 4696-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25653445

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. Mouse DPP4 (mDPP4) does not support MERS-CoV entry; however, changes at positions 288 and 330 can confer permissivity. Position 330 changes the charge and glycosylation state of mDPP4. We show that glycosylation is a major factor impacting DPP4 receptor function. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and may inform MERS-CoV mouse model development.


Subject(s)
Coronavirus Infections/prevention & control , Dipeptidyl Peptidase 4/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Models, Molecular , Virus Internalization , Amino Acid Sequence , Animals , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/genetics , Fluorescent Antibody Technique , Glycosylation , Mice , Molecular Sequence Data , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL