Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
Add more filters










Publication year range
1.
Nat Chem Biol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951648

ABSTRACT

Capsules are long-chain carbohydrate polymers that envelop the surfaces of many bacteria, protecting them from host immune responses. Capsule biosynthesis enzymes are potential drug targets and valuable biotechnological tools for generating vaccine antigens. Despite their importance, it remains unknown how structurally variable capsule polymers of Gram-negative pathogens are linked to the conserved glycolipid anchoring these virulence factors to the bacterial membrane. Using Actinobacillus pleuropneumoniae as an example, we demonstrate that CpsA and CpsC generate a poly(glycerol-3-phosphate) linker to connect the glycolipid with capsules containing poly(galactosylglycerol-phosphate) backbones. We reconstruct the entire capsule biosynthesis pathway in A. pleuropneumoniae serotypes 3 and 7, solve the X-ray crystal structure of the capsule polymerase CpsD, identify its tetratricopeptide repeat domain as essential for elongating poly(glycerol-3-phosphate) and show that CpsA and CpsC stimulate CpsD to produce longer polymers. We identify the CpsA and CpsC product as a wall teichoic acid homolog, demonstrating similarity between the biosynthesis of Gram-positive wall teichoic acid and Gram-negative capsules.

2.
Chembiochem ; : e202400440, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984757

ABSTRACT

Adenosine diphosphate (ADP)-ribosylation is a ubiquitous post-translational modification that regulates vital biological processes like histone reorganization and DNA-damage repair through the modification of various amino acid residues. Due to advances in mass-spectrometry, the collection of long-known ADP-ribose (ADPr) acceptor sites, e.g. arginine, cysteine and glutamic acid, has been expanded with serine, tyrosine and histidine, among others. Well-defined ADPr-peptides are valuable tools for investigating the exact structures, mechanisms of action and interaction partners of the different flavors of this modification. This review provides a comprehensive overview of synthetic and chemoenzymatic methodologies that enabled the construction of peptides mono-ADP-ribosylated on various amino acids, and close mimetics thereof.

3.
Org Lett ; 26(27): 5700-5704, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38935522

ABSTRACT

Protein adenosine diphosphate (ADP)-ribosylation is crucial for a proper immune response. Accordingly, viruses have evolved ADP-ribosyl hydrolases to remove these modifications, a prominent example being the SARS-CoV-2 NSP3 macrodomain, "Mac1". Consequently, inhibitors are developed by testing large libraries of small molecule candidates, with considerable success. However, a relatively underexplored angle in design pertains to the synthesis of structural substrate mimics. Here, we present the synthesis and biophysical activity of novel adenosine diphosphate ribose (ADPr) analogues as SARS-CoV-2 NSP3 Mac1 inhibitors.


Subject(s)
Adenosine Diphosphate Ribose , Antiviral Agents , SARS-CoV-2 , SARS-CoV-2/drug effects , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Humans , Molecular Structure , COVID-19 Drug Treatment , Protein Domains
4.
Chemistry ; : e202401695, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889267

ABSTRACT

Glycoconjugate vaccines are based on chemical conjugation of pathogen-associated carbohydrates with immunogenic carrier proteins and are considered a very cost-effective way to prevent infections. Most of the licensed glycoconjugate vaccines are composed of saccharide antigens extracted from bacterial sources. However, synthetic oligosaccharide antigens have become a promising alternative to natural polysaccharides with the advantage of being well-defined structures providing homogeneous conjugates. Haemophilus influenzae (Hi) is responsible for a number of severe diseases. In recent years, an increasing rate of invasive infections caused by Hi serotype a (Hia) raised some concern, because no vaccine targeting Hia is currently available. The capsular polysaccharide (CPS) of Hia is constituted by phosphodiester-linked 4-ß-d-glucose-(1→4)-d-ribitol-5-(PO4→) repeating units and is the antigen for protein-conjugated polysaccharide vaccines. To investigate the antigenic potential of the CPS from Hia, we synthesized related saccharide fragments containing up to five repeating units. Following the synthetic optimization of the needed disaccharide building blocks, they were assembled using the phosphoramidite approach for the installation of the phosphodiester linkages. The resulting CPS-based Hia oligomers were conjugated to CRM197 carrier protein and evaluated in vivo for their immunogenic potential, showing that all glycoconjugates were capable of raising antibodies recognizing Hia synthetic fragments.

5.
Proc Natl Acad Sci U S A ; 121(24): e2401686121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838019

ABSTRACT

S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.


Subject(s)
Membrane Glycoproteins , Teichoic Acids , Teichoic Acids/metabolism , Teichoic Acids/chemistry , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/chemistry , Lactobacillus/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Models, Molecular , Lactobacillus acidophilus/metabolism , Lactobacillus acidophilus/genetics
6.
Chemistry ; 30(31): e202400723, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38623783

ABSTRACT

Glycoside hydrolases (glycosidases) take part in myriad biological processes and are important therapeutic targets. Competitive and mechanism-based inhibitors are useful tools to dissect their biological role and comprise a good starting point for drug discovery. The natural product, cyclophellitol, a mechanism-based, covalent and irreversible retaining ß-glucosidase inhibitor has inspired the design of diverse α- and ß-glycosidase inhibitor and activity-based probe scaffolds. Here, we sought to deepen our understanding of the structural and functional requirements of cyclophellitol-type compounds for effective human α-glucosidase inhibition. We synthesized a comprehensive set of α-configured 1,2- and 1,5a-cyclophellitol analogues bearing a variety of electrophilic traps. The inhibitory potency of these compounds was assessed towards both lysosomal and ER retaining α-glucosidases. These studies revealed the 1,5a-cyclophellitols to be the most potent retaining α-glucosidase inhibitors, with the nature of the electrophile determining inhibitory mode of action (covalent or non-covalent). DFT calculations support the ability of the 1,5a-cyclophellitols, but not the 1,2-congeners, to adopt conformations that mimic either the Michaelis complex or transition state of α-glucosidases.


Subject(s)
Glycoside Hydrolase Inhibitors , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Humans , Molecular Conformation , Structure-Activity Relationship , Density Functional Theory , Cyclohexanols
7.
Angew Chem Int Ed Engl ; 63(26): e202401358, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38647177

ABSTRACT

The sulfolipid sulfoquinovosyl diacylglycerol (SQDG), produced by plants, algae, and cyanobacteria, constitutes a major sulfur reserve in the biosphere. Microbial breakdown of SQDG is critical for the biological utilization of its sulfur. This commences through release of the parent sugar, sulfoquinovose (SQ), catalyzed by sulfoquinovosidases (SQases). These vanguard enzymes are encoded in gene clusters that code for diverse SQ catabolic pathways. To identify, visualize and isolate glycoside hydrolase CAZY-family 31 (GH31) SQases in complex biological environments, we introduce SQ cyclophellitol-aziridine activity-based probes (ABPs). These ABPs label the active site nucleophile of this enzyme family, consistent with specific recognition of the SQ cyclophellitol-aziridine in the active site, as evidenced in the 3D structure of Bacillus megaterium SQase. A fluorescent Cy5-probe enables visualization of SQases in crude cell lysates from bacteria harbouring different SQ breakdown pathways, whilst a biotin-probe enables SQase capture and identification by proteomics. The Cy5-probe facilitates monitoring of active SQase levels during different stages of bacterial growth which show great contrast to more traditional mRNA analysis obtained by RT-qPCR. Given the importance of SQases in global sulfur cycling and in human microbiota, these SQase ABPs provide a new tool with which to study SQase occurrence, activity and stability.


Subject(s)
Fluorescent Dyes , Fluorescent Dyes/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Bacillus megaterium/enzymology , Catalytic Domain , Models, Molecular , Methylglucosides
8.
Angew Chem Weinheim Bergstr Ger ; 136(4): e202313317, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38516349

ABSTRACT

The transfer of an adenosine diphosphate (ADP) ribose moiety to a nucleophilic side chain by consumption of nicotinamide adenine dinucleotide is referred to as ADP-ribosylation, which allows for the spatiotemporal regulation of vital processes such as apoptosis and DNA repair. Recent mass-spectrometry based analyses of the "ADP-ribosylome" have identified histidine as ADP-ribose acceptor site. In order to study this modification, a fully synthetic strategy towards α-configured N(τ)- and N(π)-ADP-ribosylated histidine-containing peptides has been developed. Ribofuranosylated histidine building blocks were obtained via Mukaiyama-type glycosylation and the building blocks were integrated into an ADP-ribosylome derived peptide sequence using fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis. On-resin installation of the ADP moiety was achieved using phosphoramidite chemistry, and global deprotection provided the desired ADP-ribosylated oligopeptides. The stability under various chemical conditions and resistance against (ADP-ribosyl) hydrolase-mediated degradation has been investigated to reveal that the constructs are stable under various chemical conditions and non-degradable by any of the known ADP-ribosylhydrolases.

9.
Chemistry ; 30(25): e202400590, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38385647

ABSTRACT

Nucleophilic substitution reactions are elementary reactions in organic chemistry that are used in many synthetic routes. By quantum chemical methods, we have investigated the intrinsic competition between the backside SN2 (SN2-b) and frontside SN2 (SN2-f) pathways using a set of simple alkyl triflates as the electrophile in combination with a systematic series of phenols and partially fluorinated ethanol nucleophiles. It is revealed how and why the well-established mechanistic preference for the SN2-b pathway slowly erodes and can even be overruled by the unusual SN2-f substitution mechanism going from strong to weak alcohol nucleophiles. Activation strain analyses disclose that the SN2-b pathway is favored for strong alcohol nucleophiles because of the well-known intrinsically more efficient approach to the electrophile resulting in a more stabilizing nucleophile-electrophile interaction. In contrast, the preference of weaker alcohol nucleophiles shifts to the SN2-f pathway, benefiting from a stabilizing hydrogen bond interaction between the incoming alcohol and the leaving group. This hydrogen bond interaction is strengthened by the increased acidity of the weaker alcohol nucleophiles, thereby steering the mechanistic preference toward the frontside SN2 pathway.

10.
J Org Chem ; 89(5): 3251-3258, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38358354

ABSTRACT

Aziridines are important structural motifs and intermediates, and several synthetic strategies for the direct aziridination of alkenes have been introduced. However, many of these strategies require an excess of activated alkene, suffer from competing side-reactions, have limited functional group tolerance, or involve precious transition metal-based catalysts. Herein, we demonstrate the direct aziridination of alkenes by combining sulfonyl azides as a triplet nitrene source with a catalytic amount of an organic dye functioning as photosensitizer. We show how the nature of the sulfonyl azide, in combination with the triplet-excited state energy of the photosensitizer, affects the aziridination yield and provide a mechanistic rationale to account for the observed dependence of the reaction yield on the nature of the organic dye and sulfonyl azide reagents. The optimized reaction conditions enable the aziridination of structurally diverse and complex alkenes, carrying various functional groups, with the alkene as the limiting reagent.

11.
Org Lett ; 26(3): 739-744, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38215221

ABSTRACT

We demonstrate the use of the symmetrical diethyl(dimethyl)difluoromethylene bisphosphonate reagent for the synthesis of terminal and unsymmetrical difluoromethylene bisphosphonates, close analogues of biologically important molecules. The difference in reactivity of the methyl and ethyl groups in the symmetrical diethyl(dimthyl)difluoromethylene bisphosphonate is exploited in a stepwise demethylation-condensation sequence to functionalize either side of the reagent to allow the generation of a series of close bioisosteres of natural pyrophosphate molecules, including ADPr, CDP-glycerol and CDP-ribitol.


Subject(s)
Diphosphonates , Hydrocarbons, Fluorinated
12.
J Org Chem ; 89(3): 1618-1625, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38235652

ABSTRACT

Minimal structural differences in the structure of glycosyl donors can have a tremendous impact on their reactivity and the stereochemical outcome of their glycosylation reactions. Here, we used a combination of systematic glycosylation reactions, the characterization of potential reactive intermediates, and in-depth computational studies to study the disparate behavior of glycosylation systems involving benzylidene glucosyl and mannosyl donors. While these systems have been studied extensively, no satisfactory explanations are available for the differences observed between the 3-O-benzyl/benzoyl mannose and glucose donor systems. The potential energy surfaces of the different reaction pathways available for these donors provide an explanation for the contrasting behavior of seemingly very similar systems. Evidence has been provided for the intermediacy of benzylidene mannosyl 1,3-dioxanium ions, while the formation of the analogous 1,3-glucosyl dioxanium ions is thwarted by a prohibitively strong flagpole interaction of the C-2-O-benzyl group with the C-5 proton in moving toward the transition state, in which the glucose ring adopts a B2,5-conformation. This study provides an explanation for the intermediacy of 1,3-dioxanium ions in the mannosyl system and an answer to why these do not form from analogous glucosyl donors.

13.
Angew Chem Int Ed Engl ; 63(4): e202313317, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37903139

ABSTRACT

The transfer of an adenosine diphosphate (ADP) ribose moiety to a nucleophilic side chain by consumption of nicotinamide adenine dinucleotide is referred to as ADP-ribosylation, which allows for the spatiotemporal regulation of vital processes such as apoptosis and DNA repair. Recent mass-spectrometry based analyses of the "ADP-ribosylome" have identified histidine as ADP-ribose acceptor site. In order to study this modification, a fully synthetic strategy towards α-configured N(τ)- and N(π)-ADP-ribosylated histidine-containing peptides has been developed. Ribofuranosylated histidine building blocks were obtained via Mukaiyama-type glycosylation and the building blocks were integrated into an ADP-ribosylome derived peptide sequence using fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis. On-resin installation of the ADP moiety was achieved using phosphoramidite chemistry, and global deprotection provided the desired ADP-ribosylated oligopeptides. The stability under various chemical conditions and resistance against (ADP-ribosyl) hydrolase-mediated degradation has been investigated to reveal that the constructs are stable under various chemical conditions and non-degradable by any of the known ADP-ribosylhydrolases.


Subject(s)
Histidine , Solid-Phase Synthesis Techniques , Histidine/metabolism , Peptides/chemistry , ADP-Ribosylation , Adenosine Diphosphate/metabolism , Adenosine Diphosphate Ribose/chemistry
14.
Curr Opin Chem Biol ; 78: 102418, 2024 02.
Article in English | MEDLINE | ID: mdl-38134611

ABSTRACT

Exopolysaccharides are produced and excreted by bacteria in the generation of biofilms to provide a protective environment. These polysaccharides are generally generated as heterogeneous polymers of varying length, featuring diverse substitution patterns. To obtain well-defined fragments of these polysaccharides, organic synthesis often is the method of choice, as it allows for full control over chain length and the installation of a pre-determined substitution pattern. This review presents several recent syntheses of exopolysaccharide fragments of Pseudomonas aeruginosa and Staphylococcus aureus and illustrates how these have been used to study biosynthesis enzymes and generate synthetic glycoconjugate vaccines.


Subject(s)
Biofilms , Polysaccharides, Bacterial , Pseudomonas aeruginosa
15.
Vaccines (Basel) ; 11(12)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38140215

ABSTRACT

Group B Streptococcus (Streptococcus agalactiae or GBS) is the leading infectious cause of neonatal mortality, causing roughly 150,000 infant deaths and stillbirths annually across the globe. Approximately 20% of pregnant women are asymptomatically colonized by GBS, which is a major risk factor for severe fetal and neonatal infections as well as preterm birth, low birth weight, and neurodevelopmental abnormalities. Current clinical interventions for GBS infection are limited to antibiotics, and no vaccine is available. We previously described VAX-A1 as a highly effective conjugate vaccine against group A Streptococcus that is formulated with three antigens, SpyAD, streptolysin O, and C5a peptidase (ScpA). ScpA is a surface-expressed, well-characterized GAS virulence factor that shares nearly identical sequences with the lesser studied GBS homolog ScpB. Here, we show that GBS C5a peptidase ScpB cleaves human complement factor C5a and contributes to disease severity in the murine models of pneumonia and sepsis. Furthermore, antibodies elicited by GAS C5a peptidase bind to GBS in an ScpB-dependent manner, and VAX-A1 immunization protects mice against lethal GBS heterologous challenge. These findings support the contribution of ScpB to GBS virulence and underscore the importance of choosing vaccine antigens; a universal GAS vaccine such as VAX-A1 whose formulation includes GAS C5a peptidase may have additional benefits through some measure of cross-protection against GBS infections.

16.
Sci Adv ; 9(47): eadj2641, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38000019

ABSTRACT

Staphylococcus epidermidis expresses glycerol phosphate wall teichoic acid (WTA), but some health care-associated methicillin-resistant S. epidermidis (HA-MRSE) clones produce a second, ribitol phosphate (RboP) WTA, resembling that of the aggressive pathogen Staphylococcus aureus. RboP-WTA promotes HA-MRSE persistence and virulence in bloodstream infections. We report here that the TarM enzyme of HA-MRSE [TarM(Se)] glycosylates RboP-WTA with glucose, instead of N-acetylglucosamine (GlcNAc) by TarM(Sa) in S. aureus. Replacement of GlcNAc with glucose in RboP-WTA impairs HA-MRSE detection by human immunoglobulin G, which may contribute to the immune-evasion capacities of many invasive S. epidermidis. Crystal structures of complexes with uridine diphosphate glucose (UDP-glucose), and with UDP and glycosylated poly(RboP), reveal the binding mode and glycosylation mechanism of this enzyme and explain why TarM(Se) and TarM(Sa) link different sugars to poly(RboP). These structural data provide evidence that TarM(Se) is a processive WTA glycosyltransferase. Our study will support the targeted inhibition of TarM enzymes, and the development of RboP-WTA targeting vaccines and phage therapies.


Subject(s)
Glycosyltransferases , Staphylococcus aureus , Humans , Glycosyltransferases/chemistry , Staphylococcus epidermidis , Teichoic Acids/chemistry , Teichoic Acids/metabolism , Uridine Diphosphate/metabolism , Glucose/metabolism , Phosphates/metabolism
17.
Chem Sci ; 14(46): 13581-13586, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38033892

ABSTRACT

Class I inverting exo-acting α-1,2-mannosidases (CAZY family GH47) display an unusual catalytic itinerary featuring ring-flipped mannosides, 3S1 → 3H4‡ → 1C4. Conformationally locked 1C4 compounds, such as kifunensine, display nanomolar inhibition but large multigene GH47 mannosidase families render specific "isoform-dependent" inhibition impossible. Here we develop a bump-and-hole strategy in which a new mannose-configured 1,6-trans-cyclic sulfamidate inhibits α-d-mannosidases by virtue of its 1C4 conformation. This compound does not inhibit the wild-type GH47 model enzyme by virtue of a steric clash, a "bump", in the active site. An L310S (a conserved residue amongst human GH47 enzymes) mutant of the model Caulobacter GH47 awoke 574 nM inhibition of the previously dormant inhibitor, confirmed by structural analysis of a 0.97 Å structure. Considering that L310 is a conserved residue amongst human GH47 enzymes, this work provides a unique framework for future biotechnological studies on N-glycan maturation and ER associated degradation by isoform-specific GH47 α-d-mannosidase inhibition through a bump-and-hole approach.

18.
Expert Rev Vaccines ; 22(1): 1055-1078, 2023.
Article in English | MEDLINE | ID: mdl-37902243

ABSTRACT

INTRODUCTION: Antimicrobial resistance (AMR) is responsible for the death of millions worldwide and stands as a major threat to our healthcare systems, which are heavily reliant on antibiotics to fight bacterial infections. The development of vaccines against the main pathogens involved is urgently required as prevention remains essential against the rise of AMR. AREAS COVERED: A systematic research review was conducted on MEDLINE database focusing on the six AMR pathogens defined as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli), which are considered critical or high priority pathogens by the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC). The analysis was intersecated with the terms carbohydrate, glycoconjugate, bioconjugate, glyconanoparticle, and multiple presenting antigen system vaccines. EXPERT OPINION: Glycoconjugate vaccines have been successful in preventing meningitis and pneumoniae, and there are high expectations that they will play a key role in fighting AMR. We herein discuss the recent technological, preclinical, and clinical advances, as well as the challenges associated with the development of carbohydrate-based vaccines against leading AMR bacteria, with focus on the ESKAPE pathogens. The need of innovative clinical and regulatory approaches to tackle these targets is also highlighted.


Subject(s)
Staphylococcal Infections , Vaccines , United States , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Glycoconjugates
19.
J Biol Chem ; 299(11): 105314, 2023 11.
Article in English | MEDLINE | ID: mdl-37797696

ABSTRACT

Enzymatic modifications of bacterial exopolysaccharides enhance immune evasion and persistence during infection. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, acetylation of alginate reduces opsonic killing by phagocytes and improves reactive oxygen species scavenging. Although it is well known that alginate acetylation in P. aeruginosa requires AlgI, AlgJ, AlgF, and AlgX, how these proteins coordinate polymer modification at a molecular level remains unclear. Here, we describe the structural characterization of AlgF and its protein interaction network. We characterize direct interactions between AlgF and both AlgJ and AlgX in vitro and demonstrate an association between AlgF and AlgX, as well as AlgJ and AlgI, in P. aeruginosa. We determine that AlgF does not exhibit acetylesterase activity and is unable to bind to polymannuronate in vitro. Therefore, we propose that AlgF functions to mediate protein-protein interactions between alginate acetylation enzymes, forming the periplasmic AlgJFXK (AlgJ-AlgF-AlgX-AlgK) acetylation and export complex required for robust biofilm formation.


Subject(s)
Alginates , Pseudomonas aeruginosa , Acetylation , Alginates/chemistry , Bacterial Proteins/metabolism , Biofilms , Periplasm/metabolism , Protein Processing, Post-Translational , Pseudomonas aeruginosa/metabolism
20.
Org Biomol Chem ; 21(38): 7813-7820, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37724332

ABSTRACT

Acid ß-galactosidase (GLB1) and galactocerebrosidase (GALC) are retaining exo-ß-galactosidases involved in lysosomal glycoconjugate metabolism. Deficiency of GLB1 may result in the lysosomal storage disorders GM1 gangliosidosis, Morquio B syndrome, and galactosialidosis, and deficiency of GALC may result in Krabbe disease. Activity-based protein profiling (ABPP) is a powerful technique to assess the activity of retaining glycosidases in relation to health and disease. This work describes the use of fluorescent and biotin-carrying activity-based probes (ABPs) to assess the activity of both GLB1 and GALC in cell lysates, culture media, and tissue extracts. The reported ABPs, which complement the growing list of retaining glycosidase ABPs based on configurational isomers of cyclophellitol, should assist in fundamental and clinical research on various ß-galactosidases, whose inherited deficiencies cause debilitating lysosomal storage disorders.


Subject(s)
Gangliosidosis, GM1 , Leukodystrophy, Globoid Cell , Lysosomal Storage Diseases , Mucopolysaccharidosis IV , Humans , beta-Galactosidase/metabolism , Galactosylceramidase
SELECTION OF CITATIONS
SEARCH DETAIL
...