Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Brain ; 147(6): 2203-2213, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38797521

ABSTRACT

Stuttering affects approximately 1 in 100 adults and can result in significant communication problems and social anxiety. It most often occurs as a developmental disorder but can also be caused by focal brain damage. These latter cases may lend unique insight into the brain regions causing stuttering. Here, we investigated the neuroanatomical substrate of stuttering using three independent datasets: (i) case reports from the published literature of acquired neurogenic stuttering following stroke (n = 20, 14 males/six females, 16-77 years); (ii) a clinical single study cohort with acquired neurogenic stuttering following stroke (n = 20, 13 males/seven females, 45-87 years); and (iii) adults with persistent developmental stuttering (n = 20, 14 males/six females, 18-43 years). We used the first two datasets and lesion network mapping to test whether lesions causing acquired stuttering map to a common brain network. We then used the third dataset to test whether this lesion-based network was relevant to developmental stuttering. In our literature dataset, we found that lesions causing stuttering occurred in multiple heterogeneous brain regions, but these lesion locations were all functionally connected to a common network centred around the left putamen, including the claustrum, amygdalostriatal transition area and other adjacent areas. This finding was shown to be specific for stuttering (PFWE < 0.05) and reproducible in our independent clinical cohort of patients with stroke-induced stuttering (PFWE < 0.05), resulting in a common acquired stuttering network across both stroke datasets. Within the common acquired stuttering network, we found a significant association between grey matter volume and stuttering impact for adults with persistent developmental stuttering in the left posteroventral putamen, extending into the adjacent claustrum and amygdalostriatal transition area (PFWE < 0.05). We conclude that lesions causing acquired neurogenic stuttering map to a common brain network, centred to the left putamen, claustrum and amygdalostriatal transition area. The association of this lesion-based network with symptom severity in developmental stuttering suggests a shared neuroanatomy across aetiologies.


Subject(s)
Brain , Stroke , Stuttering , Humans , Stuttering/pathology , Stuttering/etiology , Male , Female , Middle Aged , Adult , Adolescent , Aged , Aged, 80 and over , Young Adult , Brain/pathology , Brain/diagnostic imaging , Stroke/complications , Stroke/pathology , Magnetic Resonance Imaging , Brain Mapping/methods
2.
ArXiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37744469

ABSTRACT

The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.

3.
J Neurol ; 270(11): 5211-5222, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37532802

ABSTRACT

BACKGROUND: Nearly 1 million Americans are living with multiple sclerosis (MS) and 30-50% will experience memory dysfunction. It remains unclear whether this memory dysfunction is due to overall white matter lesion burden or damage to specific neuroanatomical structures. Here we test if MS memory dysfunction is associated with white matter lesions to a specific brain circuit. METHODS: We performed a cross-sectional analysis of standard structural images and verbal memory scores as assessed by immediate recall trials from 431 patients with MS (mean age 49.2 years, 71.9% female) enrolled at a large, academic referral center. White matter lesion locations from each patient were mapped using a validated algorithm. First, we tested for associations between memory dysfunction and total MS lesion volume. Second, we tested for associations between memory dysfunction and lesion intersection with an a priori memory circuit derived from stroke lesions. Third, we performed mediation analyses to determine which variable was most associated with memory dysfunction. Finally, we performed a data-driven analysis to derive de-novo brain circuits for MS memory dysfunction using both functional (n = 1000) and structural (n = 178) connectomes. RESULTS: Both total lesion volume (r = 0.31, p < 0.001) and lesion damage to our a priori memory circuit (r = 0.34, p < 0.001) were associated with memory dysfunction. However, lesion damage to the memory circuit fully mediated the association of lesion volume with memory performance. Our data-driven analysis identified multiple connections associated with memory dysfunction, including peaks in the hippocampus (T = 6.05, family-wise error p = 0.000008), parahippocampus, fornix and cingulate. Finally, the overall topography of our data-driven MS memory circuit matched our a priori stroke-derived memory circuit. CONCLUSIONS: Lesion locations associated with memory dysfunction in MS map onto a specific brain circuit centered on the hippocampus. Lesion damage to this circuit fully mediated associations between lesion volume and memory. A circuit-based approach to mapping MS symptoms based on lesions visible on standard structural imaging may prove useful for localization and prognosis of higher order deficits in MS.


Subject(s)
Multiple Sclerosis , Stroke , Humans , Female , Middle Aged , Male , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Memory, Short-Term , Stroke/complications , Brain/pathology
4.
JAMA Neurol ; 80(9): 891-902, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37399040

ABSTRACT

Importance: It remains unclear why lesions in some locations cause epilepsy while others do not. Identifying the brain regions or networks associated with epilepsy by mapping these lesions could inform prognosis and guide interventions. Objective: To assess whether lesion locations associated with epilepsy map to specific brain regions and networks. Design, Setting, and Participants: This case-control study used lesion location and lesion network mapping to identify the brain regions and networks associated with epilepsy in a discovery data set of patients with poststroke epilepsy and control patients with stroke. Patients with stroke lesions and epilepsy (n = 76) or no epilepsy (n = 625) were included. Generalizability to other lesion types was assessed using 4 independent cohorts as validation data sets. The total numbers of patients across all datasets (both discovery and validation datasets) were 347 with epilepsy and 1126 without. Therapeutic relevance was assessed using deep brain stimulation sites that improve seizure control. Data were analyzed from September 2018 through December 2022. All shared patient data were analyzed and included; no patients were excluded. Main Outcomes and Measures: Epilepsy or no epilepsy. Results: Lesion locations from 76 patients with poststroke epilepsy (39 [51%] male; mean [SD] age, 61.0 [14.6] years; mean [SD] follow-up, 6.7 [2.0] years) and 625 control patients with stroke (366 [59%] male; mean [SD] age, 62.0 [14.1] years; follow-up range, 3-12 months) were included in the discovery data set. Lesions associated with epilepsy occurred in multiple heterogenous locations spanning different lobes and vascular territories. However, these same lesion locations were part of a specific brain network defined by functional connectivity to the basal ganglia and cerebellum. Findings were validated in 4 independent cohorts including 772 patients with brain lesions (271 [35%] with epilepsy; 515 [67%] male; median [IQR] age, 60 [50-70] years; follow-up range, 3-35 years). Lesion connectivity to this brain network was associated with increased risk of epilepsy after stroke (odds ratio [OR], 2.82; 95% CI, 2.02-4.10; P < .001) and across different lesion types (OR, 2.85; 95% CI, 2.23-3.69; P < .001). Deep brain stimulation site connectivity to this same network was associated with improved seizure control (r, 0.63; P < .001) in 30 patients with drug-resistant epilepsy (21 [70%] male; median [IQR] age, 39 [32-46] years; median [IQR] follow-up, 24 [16-30] months). Conclusions and Relevance: The findings in this study indicate that lesion-related epilepsy mapped to a human brain network, which could help identify patients at risk of epilepsy after a brain lesion and guide brain stimulation therapies.


Subject(s)
Epilepsy , Stroke , Humans , Male , Middle Aged , Adult , Female , Case-Control Studies , Brain/pathology , Epilepsy/etiology , Epilepsy/pathology , Seizures/physiopathology , Stroke/physiopathology
5.
Ann Neurol ; 94(3): 434-441, 2023 09.
Article in English | MEDLINE | ID: mdl-37289520

ABSTRACT

OBJECTIVE: Unawareness of a deficit, anosognosia, can occur for visual or motor deficits and lends insight into awareness itself; however, lesions associated with anosognosia occur in many different brain locations. METHODS: We analyzed 267 lesion locations associated with either vision loss (with and without awareness) or weakness (with and without awareness). The network of brain regions connected to each lesion location was computed using resting-state functional connectivity from 1,000 healthy subjects. Both domain specific and cross-modal associations with awareness were identified. RESULTS: The domain-specific network for visual anosognosia demonstrated connectivity to visual association cortex and posterior cingulate while motor anosognosia was defined by insula, supplementary motor area, and anterior cingulate connectivity. A cross-modal anosognosia network was defined by connectivity to the hippocampus and precuneus (false discovery rate p < 0.05). INTERPRETATION: Our results identify distinct network connections associated with visual and motor anosognosia and a shared, cross-modal network for awareness of deficits centered on memory-related brain structures. ANN NEUROL 2023;94:434-441.


Subject(s)
Agnosia , Awareness , Humans , Brain/pathology , Cerebral Cortex , Gyrus Cinguli , Magnetic Resonance Imaging/methods
7.
Biol Psychiatry ; 94(8): 640-649, 2023 10 15.
Article in English | MEDLINE | ID: mdl-36796601

ABSTRACT

BACKGROUND: Emotion regulation has been linked to specific brain networks based on functional neuroimaging, but networks causally involved in emotion regulation remain unknown. METHODS: We studied patients with focal brain damage (N = 167) who completed the managing emotion subscale of the Mayer-Salovey-Caruso Emotional Intelligence Test, a measure of emotion regulation. First, we tested whether patients with lesions to an a priori network derived from functional neuroimaging showed impaired emotion regulation. Next, we leveraged lesion network mapping to derive a de novo brain network for emotion regulation. Finally, we used an independent lesion database (N = 629) to test whether damage to this lesion-derived network would increase the risk of neuropsychiatric conditions associated with emotion regulation impairment. RESULTS: First, patients with lesions intersecting the a priori emotion regulation network derived from functional neuroimaging showed impairments in the managing emotion subscale of the Mayer-Salovey-Caruso Emotional Intelligence Test. Next, our de novo brain network for emotion regulation derived from lesion data was defined by functional connectivity to the left ventrolateral prefrontal cortex. Finally, in the independent database, lesions associated with mania, criminality, and depression intersected this de novo brain network more than lesions associated with other disorders. CONCLUSIONS: The findings suggest that emotion regulation maps to a connected brain network centered on the left ventrolateral prefrontal cortex. Lesion damage to part of this network is associated with reported difficulties in managing emotions and is related to increased likelihood of having one of several neuropsychiatric disorders.


Subject(s)
Emotional Regulation , Humans , Magnetic Resonance Imaging , Brain , Emotions/physiology , Functional Neuroimaging , Brain Mapping
8.
Ann Neurol ; 93(3): 577-590, 2023 03.
Article in English | MEDLINE | ID: mdl-36394118

ABSTRACT

OBJECTIVE: Tuberous sclerosis complex (TSC) is associated with focal brain "tubers" and a high incidence of autism spectrum disorder (ASD). The location of brain tubers associated with autism may provide insight into the neuroanatomical substrate of ASD symptoms. METHODS: We delineated tuber locations for 115 TSC participants with ASD (n = 31) and without ASD (n = 84) from the Tuberous Sclerosis Complex Autism Center of Excellence Research Network. We tested for associations between ASD diagnosis and tuber burden within the whole brain, specific lobes, and at 8 regions of interest derived from the ASD neuroimaging literature, including the anterior cingulate, orbitofrontal and posterior parietal cortices, inferior frontal and fusiform gyri, superior temporal sulcus, amygdala, and supplemental motor area. Next, we performed an unbiased data-driven voxelwise lesion symptom mapping (VLSM) analysis. Finally, we calculated the risk of ASD associated with positive findings from the above analyses. RESULTS: There were no significant ASD-related differences in tuber burden across the whole brain, within specific lobes, or within a priori regions derived from the ASD literature. However, using VLSM analysis, we found that tubers involving the right fusiform face area (FFA) were associated with a 3.7-fold increased risk of developing ASD. INTERPRETATION: Although TSC is a rare cause of ASD, there is a strong association between tuber involvement of the right FFA and ASD diagnosis. This highlights a potentially causative mechanism for developing autism in TSC that may guide research into ASD symptoms more generally. ANN NEUROL 2023;93:577-590.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Tuberous Sclerosis , Humans , Autism Spectrum Disorder/pathology , Tuberous Sclerosis/complications , Brain/pathology , Neuroimaging , Magnetic Resonance Imaging/methods
9.
Nat Med ; 28(6): 1249-1255, 2022 06.
Article in English | MEDLINE | ID: mdl-35697842

ABSTRACT

Drug addiction is a public health crisis for which new treatments are urgently needed. In rare cases, regional brain damage can lead to addiction remission. These cases may be used to identify therapeutic targets for neuromodulation. We analyzed two cohorts of patients addicted to smoking at the time of focal brain damage (cohort 1 n = 67; cohort 2 n = 62). Lesion locations were mapped to a brain atlas and the brain network functionally connected to each lesion location was computed using human connectome data (n = 1,000). Associations with addiction remission were identified. Generalizability was assessed using an independent cohort of patients with focal brain damage and alcohol addiction risk scores (n = 186). Specificity was assessed through comparison to 37 other neuropsychological variables. Lesions disrupting smoking addiction occurred in many different brain locations but were characterized by a specific pattern of brain connectivity. This pattern involved positive connectivity to the dorsal cingulate, lateral prefrontal cortex, and insula and negative connectivity to the medial prefrontal and temporal cortex. This circuit was reproducible across independent lesion cohorts, associated with reduced alcohol addiction risk, and specific to addiction metrics. Hubs that best matched the connectivity profile for addiction remission were the paracingulate gyrus, left frontal operculum, and medial fronto-polar cortex. We conclude that brain lesions disrupting addiction map to a specific human brain circuit and that hubs in this circuit provide testable targets for therapeutic neuromodulation.


Subject(s)
Alcoholism , Brain Injuries , Connectome , Alcoholism/pathology , Brain/diagnostic imaging , Brain/pathology , Brain Injuries/pathology , Brain Mapping , Cohort Studies , Humans , Magnetic Resonance Imaging
10.
Ann Neurol ; 91(2): 217-224, 2022 02.
Article in English | MEDLINE | ID: mdl-34961965

ABSTRACT

OBJECTIVE: Blindsight is a disorder where brain injury causes loss of conscious but not unconscious visual perception. Prior studies have produced conflicting results regarding the neuroanatomical pathways involved in this unconscious perception. METHODS: We performed a systematic literature search to identify lesion locations causing visual field loss in patients with blindsight (n = 34) and patients without blindsight (n = 35). Resting state functional connectivity between each lesion location and all other brain voxels was computed using a large connectome database (n = 1,000). Connections significantly associated with blindsight (vs no blindsight) were identified. RESULTS: Functional connectivity between lesion locations and the ipsilesional medial pulvinar was significantly associated with blindsight (family wise error p = 0.029). No significant connectivity differences were found to other brain regions previously implicated in blindsight. This finding was independent of methods (eg, flipping lesions to the left or right) and stimulus type (moving vs static). INTERPRETATION: Connectivity to the ipsilesional medial pulvinar best differentiates lesion locations associated with blindsight versus those without blindsight. Our results align with recent data from animal models and provide insight into the neuroanatomical substrate of unconscious visual abilities in patients. ANN NEUROL 2022;91:217-224.


Subject(s)
Nerve Net/physiopathology , Unconsciousness/psychology , Visual Perception , Adult , Aged , Brain Mapping , Connectome , Female , Functional Laterality/physiology , Humans , Male , Middle Aged , Nerve Net/diagnostic imaging , Pulvinar/diagnostic imaging , Pulvinar/physiopathology , Rest , Vision Disorders , Visual Fields , Young Adult
11.
IEEE Trans Med Imaging ; 41(1): 172-185, 2022 01.
Article in English | MEDLINE | ID: mdl-34432631

ABSTRACT

Functional MRI (fMRI) is widely used to study the functional organization of normal and pathological brains. However, the fMRI signal may be contaminated by subject motion artifacts that are only partially mitigated by motion correction strategies. These artifacts lead to distance-dependent biases in the inferred signal correlations. To mitigate these spurious effects, motion-corrupted volumes are censored from fMRI time series. Censoring can result in discontinuities in the fMRI signal, which may lead to substantial alterations in functional connectivity analysis. We propose a new approach to recover the missing entries from censoring based on structured low rank matrix completion. We formulated the artifact-reduction problem as the recovery of a super-resolved matrix from unprocessed fMRI measurements. We enforced a low rank prior on a large structured matrix, formed from the samples of the time series, to recover the missing entries. The recovered time series, in addition to being motion compensated, are also slice-time corrected at a fine temporal resolution. To achieve a fast and memory-efficient solution for our proposed optimization problem, we employed a variable splitting strategy. We validated the algorithm with simulations, data acquired under different motion conditions, and datasets from the ABCD study. Functional connectivity analysis showed that the proposed reconstruction resulted in connectivity matrices with lower errors in pair-wise correlation than non-censored and censored time series based on a standard processing pipeline. In addition, seed-based correlation analyses showed improved delineation of the default mode network. These demonstrate that the method can effectively reduce the adverse effects of motion in fMRI analysis.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping , Head Movements , Image Processing, Computer-Assisted , Motion
13.
J Neuroimaging ; 31(5): 947-955, 2021 09.
Article in English | MEDLINE | ID: mdl-34101274

ABSTRACT

BACKGROUND AND PURPOSE: Functional MRI neurofeedback (fMRI-nf) leverages the brain's ability to self-regulate its own activity. However, self-regulation processes engaged during fMRI-nf are incompletely understood. Here, we used matched feedback in an fMRI-nf experimental protocol to investigate whether brain processes recognize true neurofeedback signals. METHODS: We implemented an existing fMRI-nf protocol to train lateralized motor activity using a finger-tap task in conjunction with real-time feedback. Twelve healthy, right-handed, adult participants were assigned into age- and sex-matched active and sham study groups. Matched participant pairs received the same visual feedback, based on brain activity of the participant from the active group. We compared group-averaged activation maps before, during, and after neurofeedback, and analyzed changes in lateralized motor activity due to neurofeedback. RESULTS: Active and sham groups demonstrated different brain activation to the same feedback during neurofeedback. In particular, there was higher activation in visual cortex, secondary somatosensory cortex, and right inferior frontal gyrus in the active group compared to the sham group. Conversely, sham participants demonstrated higher activation in anterior cingulate cortex, left frontal pole, and posterior superior temporal gyrus. Despite differing brain activations during neurofeedback, neither group demonstrated significant improvement in lateralized motor activity from pre to postfeedback scan in the same session. We also observed no significant difference between pre and postfeedback activation maps, suggesting that no significant finger-tap related functional reorganization had occurred. CONCLUSIONS: These findings suggest that fMRI neurofeedback paradigms that monitor or incorporate activity from regions reported here would provide enhanced efficacy for research investigation and clinical intervention.


Subject(s)
Neurofeedback , Adult , Brain/diagnostic imaging , Brain Mapping , Humans , Magnetic Resonance Imaging , Reward
15.
Ann Neurol ; 89(4): 726-739, 2021 04.
Article in English | MEDLINE | ID: mdl-33410532

ABSTRACT

OBJECTIVE: Approximately 50% of patients with tuberous sclerosis complex develop infantile spasms, a sudden onset epilepsy syndrome associated with poor neurological outcomes. An increased burden of tubers confers an elevated risk of infantile spasms, but it remains unknown whether some tuber locations confer higher risk than others. Here, we test whether tuber location and connectivity are associated with infantile spasms. METHODS: We segmented tubers from 123 children with (n = 74) and without (n = 49) infantile spasms from a prospective observational cohort. We used voxelwise lesion symptom mapping to test for an association between spasms and tuber location. We then used lesion network mapping to test for an association between spasms and connectivity with tuber locations. Finally, we tested the discriminability of identified associations with logistic regression and cross-validation as well as statistical mediation. RESULTS: Tuber locations associated with infantile spasms were heterogenous, and no single location was significantly associated with spasms. However, >95% of tuber locations associated with spasms were functionally connected to the globi pallidi and cerebellar vermis. These connections were specific compared to tubers in patients without spasms. Logistic regression found that globus pallidus connectivity was a stronger predictor of spasms (odds ratio [OR] = 1.96, 95% confidence interval [CI] = 1.10-3.50, p = 0.02) than tuber burden (OR = 1.65, 95% CI = 0.90-3.04, p = 0.11), with a mean receiver operating characteristic area under the curve of 0.73 (±0.1) during repeated cross-validation. INTERPRETATION: Connectivity between tuber locations and the bilateral globi pallidi is associated with infantile spasms. Our findings lend insight into spasm pathophysiology and may identify patients at risk. ANN NEUROL 2021;89:726-739.


Subject(s)
Hamartoma/diagnostic imaging , Nerve Net/diagnostic imaging , Spasms, Infantile/diagnostic imaging , Tuberous Sclerosis/diagnostic imaging , Age of Onset , Brain Mapping , Cerebellar Nuclei/diagnostic imaging , Cerebellar Nuclei/pathology , Child, Preschool , Connectome , Female , Globus Pallidus/diagnostic imaging , Globus Pallidus/pathology , Hamartoma/pathology , Humans , Infant , Magnetic Resonance Imaging , Male , Nerve Net/pathology , Prospective Studies , ROC Curve , Spasms, Infantile/pathology , Tuberous Sclerosis/pathology
16.
J Clin Invest ; 130(10): 5209-5222, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32831292

ABSTRACT

BACKGROUNDAlthough mania is characteristic of bipolar disorder, it can also occur following focal brain damage. Such cases may provide unique insight into brain regions responsible for mania symptoms and identify therapeutic targets.METHODSLesion locations associated with mania were identified using a systematic literature search (n = 41) and mapped onto a common brain atlas. The network of brain regions functionally connected to each lesion location was computed using normative human connectome data (resting-state functional MRI, n = 1000) and contrasted with those obtained from lesion locations not associated with mania (n = 79). Reproducibility was assessed using independent cohorts of mania lesions derived from clinical chart review (n = 15) and of control lesions (n = 490). Results were compared with brain stimulation sites previously reported to induce or relieve mania symptoms.RESULTSLesion locations associated with mania were heterogeneous and no single brain region was lesioned in all, or even most, cases. However, these lesion locations showed a unique pattern of functional connectivity to the right orbitofrontal cortex, right inferior temporal gyrus, and right frontal pole. This connectivity profile was reproducible across independent lesion cohorts and aligned with the effects of therapeutic brain stimulation on mania symptoms.CONCLUSIONBrain lesions associated with mania are characterized by a specific pattern of brain connectivity that lends insight into localization of mania symptoms and potential therapeutic targets.FUNDINGFundação para a Ciência e Tecnologia (FCT), Harvard Medical School DuPont-Warren Fellowship, Portuguese national funds from FCT and Fundo Europeu de Desenvolvimento Regional, Child Neurology Foundation Shields Research, Sidney R. Baer, Jr. Foundation, Nancy Lurie Marks Foundation, Mather's Foundation, and the NIH.


Subject(s)
Brain Injuries/complications , Brain Injuries/diagnostic imaging , Mania/diagnostic imaging , Mania/etiology , Adult , Aged , Aged, 80 and over , Cohort Studies , Connectome/methods , Female , Humans , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Male , Mania/therapy , Middle Aged , Models, Neurological , Transcranial Magnetic Stimulation , Young Adult
18.
Brain ; 143(2): 541-553, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31919494

ABSTRACT

Inconsistent findings from migraine neuroimaging studies have limited attempts to localize migraine symptomatology. Novel brain network mapping techniques offer a new approach for linking neuroimaging findings to a common neuroanatomical substrate and localizing therapeutic targets. In this study, we attempted to determine whether neuroanatomically heterogeneous neuroimaging findings of migraine localize to a common brain network. We used meta-analytic coordinates of decreased grey matter volume in migraineurs as seed regions to generate resting state functional connectivity network maps from a normative connectome (n = 1000). Network maps were overlapped to identify common regions of connectivity across all coordinates. Specificity of our findings was evaluated using a whole-brain Bayesian spatial generalized linear mixed model and a region of interest analysis with comparison groups of chronic pain and a neurologic control (Alzheimer's disease). We found that all migraine coordinates (11/11, 100%) were negatively connected (t ≥ ±7, P < 10-6 family-wise error corrected for multiple comparisons) to a single location in left extrastriate visual cortex overlying dorsal V3 and V3A subregions. More than 90% of coordinates (10/11) were also positively connected with bilateral insula and negatively connected with the hypothalamus. Bayesian spatial generalized linear mixed model whole-brain analysis identified left V3/V3A as the area with the most specific connectivity to migraine coordinates compared to control coordinates (voxel-wise probability of ≥90%). Post hoc region of interest analyses further supported the specificity of this finding (ANOVA P = 0.02; pairwise t-tests P = 0.03 and P = 0.003, respectively). In conclusion, using coordinate-based network mapping, we show that regions of grey matter volume loss in migraineurs localize to a common brain network defined by connectivity to visual cortex V3/V3A, a region previously implicated in mechanisms of cortical spreading depression in migraine. Our findings help unify migraine neuroimaging literature and offer a migraine-specific target for neuromodulatory treatment.


Subject(s)
Brain Mapping , Brain/physiopathology , Migraine Disorders/physiopathology , Nerve Net/physiopathology , Brain Mapping/methods , Cerebral Cortex/physiopathology , Connectome/methods , Female , Gray Matter/physiopathology , Humans , Magnetic Resonance Imaging/methods , Male , Neuroimaging/methods , Visual Cortex/physiopathology
19.
Hum Brain Mapp ; 41(6): 1520-1531, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31904898

ABSTRACT

Brain lesions can provide unique insight into the neuroanatomical substrate of human consciousness. For example, brainstem lesions causing coma map to a specific region of the tegmentum. Whether specific lesion locations outside the brainstem are associated with loss of consciousness (LOC) remains unclear. Here, we investigate the topography of cortical lesions causing prolonged LOC (N = 16), transient LOC (N = 91), or no LOC (N = 64). Using standard voxel lesion symptom mapping, no focus of brain damage was associated with LOC. Next, we computed the network of brain regions functionally connected to each lesion location using a large normative connectome dataset (N = 1,000). This technique, termed lesion network mapping, can test whether lesions causing LOC map to a connected brain circuit rather than one brain region. Connectivity between cortical lesion locations and an a priori coma-specific region of brainstem tegmentum was an independent predictor of LOC (B = 1.2, p = .004). Connectivity to the dorsal brainstem was the only predictor of LOC in a whole-brain voxel-wise analysis. This relationship was driven by anticorrelation (negative correlation) between lesion locations and the dorsal brainstem. The map of regions anticorrelated to the dorsal brainstem thus defines a distributed brain circuit that, when damaged, is most likely to cause LOC. This circuit showed a slight posterior predominance and had peaks in the bilateral claustrum. Our results suggest that cortical lesions causing LOC map to a connected brain circuit, linking cortical lesions that disrupt consciousness to brainstem sites that maintain arousal.


Subject(s)
Brain Stem/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/injuries , Head Injuries, Penetrating/diagnostic imaging , Head Injuries, Penetrating/physiopathology , Unconsciousness/diagnostic imaging , Adult , Aged , Brain Mapping , Cerebral Cortex/physiopathology , Claustrum/diagnostic imaging , Claustrum/physiopathology , Coma , Connectome , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Predictive Value of Tests , Unconsciousness/physiopathology , Veterans , Vietnam Conflict
20.
Brain ; 142(12): 3975-3990, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31740940

ABSTRACT

Damage to the right fusiform face area can disrupt the ability to recognize faces, a classic example of how damage to a specialized brain region can disrupt a specialized brain function. However, similar symptoms can arise from damage to other brain regions, and face recognition is now thought to depend on a distributed brain network. The extent of this network and which regions are critical for facial recognition remains unclear. Here, we derive this network empirically based on lesion locations causing clinically significant impairments in facial recognition. Cases of acquired prosopagnosia were identified through a systematic literature search and lesion locations were mapped to a common brain atlas. The network of brain regions connected to each lesion location was identified using resting state functional connectivity from healthy participants (n = 1000), a technique termed lesion network mapping. Lesion networks were overlapped to identify connections common to lesions causing prosopagnosia. Reproducibility was assessed using split-half replication. Specificity was assessed through comparison with non-specific control lesions (n = 135) and with control lesions associated with symptoms other than prosopagnosia (n = 155). Finally, we tested whether our facial recognition network derived from clinically evident cases of prosopagnosia could predict subclinical facial agnosia in an independent lesion cohort (n = 31). Our systematic literature search identified 44 lesions causing prosopagnosia, only 29 of which intersected the right fusiform face area. However, all 44 lesion locations fell within a single brain network defined by connectivity to the right fusiform face area. Less consistent connectivity was found to other face-selective regions. Surprisingly, all 44 lesion locations were also functionally connected, through negative correlation, with regions in the left frontal cortex. This connectivity pattern was highly reproducible and specific to lesions causing prosopagnosia. Positive connectivity to the right fusiform face area and negative connectivity to left frontal regions were independent predictors of prosopagnosia and predicted subclinical facial agnosia in an independent lesion cohort. We conclude that lesions causing prosopagnosia localize to a single functionally connected brain network defined by connectivity to the right fusiform face area and to left frontal regions. Implications of these findings for models of facial recognition deficits are discussed.


Subject(s)
Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Prosopagnosia/diagnostic imaging , Brain/physiopathology , Brain Mapping , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Nerve Net/physiopathology , Prosopagnosia/physiopathology , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...