Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
1.
Nat Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956197

ABSTRACT

Clinical whole-genome sequencing (WGS) has been shown to deliver potential benefits to children with cancer and to alter treatment in high-risk patient groups. It remains unknown whether offering WGS to every child with suspected cancer can change patient management. We collected WGS variant calls and clinical and diagnostic information from 281 children (282 tumors) across two English units (n = 152 from a hematology center, n = 130 from a solid tumor center) where WGS had become a routine test. Our key finding was that variants uniquely attributable to WGS changed the management in ~7% (20 out of 282) of cases while providing additional disease-relevant findings, beyond standard-of-care molecular tests, in 108 instances for 83 (29%) cases. Furthermore, WGS faithfully reproduced every standard-of-care molecular test (n = 738) and revealed several previously unknown genomic features of childhood tumors. We show that WGS can be delivered as part of routine clinical care to children with suspected cancer and can change clinical management by delivering unexpected genomic insights. Our experience portrays WGS as a clinically impactful assay for routine practice, providing opportunities for assay consolidation and for delivery of molecularly informed patient care.

2.
FEMS Microbiol Rev ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897736

ABSTRACT

The co-selective pressure of heavy metals is a contributor to the dissemination and persistence of antibiotic resistance genes in environmental reservoirs. The overlapping range of antibiotic and metal contamination and similarities in their resistance mechanisms point to an intertwined evolutionary history. Metal resistance genes are known to be genetically linked to antibiotic resistance genes, with plasmids, transposons, and integrons involved in the assembly and horizontal transfer of the resistance elements. Models of co-selection between metals and antibiotic have been proposed, however the molecular aspects of these phenomena are in many cases not defined or quantified and the importance of specific metals, environments, bacterial taxa, mobile genetic elements, and other abiotic or biotic conditions are not clear. Co-resistance is often suggested as a dominant mechanism, but interpretations are beset with correlational bias. Proof of principle examples of cross-resistance and co-regulation have been described but more in-depth characterisations are needed, using methodologies that confirm functional expression of resistance genes and that connect genes with specific bacterial hosts. Here, we comprehensively evaluate the recent evidence for different models of co-selection from pure culture and metagenomic studies in environmental contexts and we highlight outstanding questions.

3.
Microb Biotechnol ; 17(6): e14511, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38925606

ABSTRACT

Ethylene and ethylene oxide are widely used in the chemical industry, and ethylene is also important for its role in fruit ripening. Better sensing systems would assist risk management of these chemicals. Here, we characterise the ethylene regulatory system in Mycobacterium strain NBB4 and use these genetic parts to create a biosensor. The regulatory genes etnR1 and etnR2 and cognate promoter Petn were combined with a fluorescent reporter gene (fuGFP) in a Mycobacterium shuttle vector to create plasmid pUS301-EtnR12P. Cultures of M. smegmatis mc2-155(pUS301-EtnR12P) gave a fluorescent signal in response to ethylene oxide with a detection limit of 0.2 µM (9 ppb). By combining the epoxide biosensor cells with another culture expressing the ethylene monooxygenase, the system was converted into an ethylene biosensor. The co-culture was capable of detecting ethylene emission from banana fruit. These are the first examples of whole-cell biosensors for epoxides or aliphatic alkenes. This work also resolves long-standing questions concerning the regulation of ethylene catabolism in bacteria.


Subject(s)
Biosensing Techniques , Ethylene Oxide , Ethylenes , Biosensing Techniques/methods , Ethylenes/metabolism , Ethylene Oxide/metabolism , Mycobacterium/genetics , Mycobacterium/metabolism , Musa/microbiology , Genes, Reporter , Plasmids/genetics
4.
Environ Microbiol ; 26(2): e16567, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38233213

ABSTRACT

Soluble di-iron monooxygenase (SDIMO) enzymes enable insertion of oxygen into diverse substrates and play significant roles in biogeochemistry, bioremediation and biocatalysis. An unusual SDIMO was detected in an earlier study in the genome of the soil organism Solimonas soli, but was not characterized. Here, we show that the S. soli SDIMO is part of a new clade, which we define as 'Group 7'; these share a conserved gene organization with alkene monooxygenases but have only low amino acid identity. The S. soli genes (named zmoABCD) could be functionally expressed in Pseudomonas putida KT2440 but not in Escherichia coli TOP10. The recombinants made epoxides from C2 C8 alkenes, preferring small linear alkenes (e.g. propene), but also epoxidating branched, carboxylated and chlorinated substrates. Enzymatic epoxidation of acrylic acid was observed for the first time. ZmoABCD oxidised the organochlorine pollutants vinyl chloride (VC) and cis-1,2-dichloroethene (cDCE), with the release of inorganic chloride from VC but not cDCE. The original host bacterium S. soli could not grow on any alkenes tested but grew well on phenol and n-octane. Further work is needed to link ZmoABCD and the other Group 7 SDIMOs to specific physiological and ecological roles.


Subject(s)
Gammaproteobacteria , Pseudomonas putida , Vinyl Chloride , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Alkenes/metabolism , Gammaproteobacteria/metabolism , Biodegradation, Environmental , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
5.
Pediatr Dev Pathol ; 27(3): 260-265, 2024.
Article in English | MEDLINE | ID: mdl-38098239

ABSTRACT

Wilms tumor (WT) is the commonest cause of renal cancer in children. In Europe, a diagnosis is made for most cases on typical clinical and radiological findings, prior to pre-operative chemotherapy. Here, we describe a case of a young boy presenting with a large abdominal tumor, associated with raised serum alpha-fetoprotein (AFP) levels at diagnosis. Given the atypical features present, a biopsy was taken, and histology was consistent with WT, showing triphasic WT, with epithelial, stromal, and blastemal elements present, and positive WT1 and CD56 immunohistochemical staining. During pre-operative chemotherapy, serial serum AFP measurements showed further increases, despite a radiological response, before a subsequent fall to normal following nephrectomy. The resection specimen was comprised of ~55% and ~45% stromal and epithelial elements, respectively, with no anaplasia, but immunohistochemistry using AFP staining revealed positive mucinous intestinal epithelium, consistent with the serum AFP observations. The lack of correlation between tumor response and serum AFP levels in this case highlights a more general clinical unmet need to identify WT-specific circulating tumor markers.


Subject(s)
Biomarkers, Tumor , Kidney Neoplasms , Wilms Tumor , alpha-Fetoproteins , Humans , Wilms Tumor/diagnosis , Wilms Tumor/pathology , Wilms Tumor/blood , alpha-Fetoproteins/analysis , alpha-Fetoproteins/metabolism , Male , Biomarkers, Tumor/blood , Biomarkers, Tumor/analysis , Kidney Neoplasms/diagnosis , Kidney Neoplasms/pathology , Kidney Neoplasms/blood , Nephrectomy
7.
iScience ; 26(11): 108301, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026211

ABSTRACT

Integrons are genetic elements, found among diverse bacteria and archaea, that capture and rearrange gene cassettes to rapidly generate genetic diversity and drive adaptation. Despite their broad taxonomic and geographic prevalence, and their role in microbial adaptation, the functions of gene cassettes remain poorly characterized. Here, using a combination of bioinformatic and experimental analyses, we examined the functional diversity of gene cassettes from different environments. We find that cassettes encode diverse antimicrobial resistance (AMR) determinants, including those conferring resistance to antibiotics currently in the developmental pipeline. Further, we find a subset of cassette functions is universally enriched relative to their broader metagenomes. These are largely involved in (a)biotic interactions, including AMR, phage defense, virulence, biodegradation, and stress tolerance. The remainder of functions are sample-specific, suggesting that they confer localised functions relevant to their microenvironment. Together, they comprise functional profiles different from bulk metagenomes, representing niche-adaptive components of the prokaryotic pangenome.

8.
Br J Cancer ; 129(9): 1451-1461, 2023 10.
Article in English | MEDLINE | ID: mdl-37789102

ABSTRACT

BACKGROUND: MiR-371~373 and miR-302/367 cluster over-expression occurs in all malignant germ cell tumours (GCTs), regardless of age (paediatric/adult), site (gonadal/extragonadal), or subtype [seminoma, yolk sac tumour (YST), embryonal carcinoma (EC)]. Six of eight microRNAs from these clusters contain the seed sequence 'AAGUGC', determining mRNA targeting. Here we sought to identify the significance of these observations by targeting these microRNAs functionally. METHODS: We targeted miR-371~373 and/or miR-302/367 clusters in malignant GCT cell lines, using CRISPR-Cas9, gapmer primary miR-302/367 transcript inhibition, and peptide nucleic acid (PNA) or locked nucleic acid (LNA)-DNA inhibition targeting miR-302a-d-3p, and undertook relevant functional assays. RESULTS: MiR-302/367 cluster microRNAs made the largest contribution to AAGUGC seed abundance in malignant GCT cells, regardless of subtype (seminoma/YST/EC). Following the unsuccessful use of CRISPR-Cas9, gapmer, and PNA systems, LNA-DNA-based targeting resulted in growth inhibition in seminoma and YST cells. This was associated with the de-repression of multiple mRNAs targeted by AAGUGC seed-containing microRNAs, with pathway analysis confirming predominant disruption of Rho-GTPase signalling, vesicle organisation/transport, and cell cycle regulation, findings corroborated in clinical samples. Further LNA-DNA inhibitor studies confirmed direct cell cycle effects, with an increase of cells in G0/G1-phase and a decrease in S-phase. CONCLUSION: Targeting of specific miR-371~373 and miR-302/367 microRNAs in malignant GCTs demonstrated their functional significance, with growth inhibition mediated through cell cycle disruption.


Subject(s)
MicroRNAs , Neoplasms, Germ Cell and Embryonal , Seminoma , Testicular Neoplasms , Male , Adult , Humans , Child , MicroRNAs/genetics , Seminoma/genetics , Testicular Neoplasms/pathology , Cell Cycle , DNA
9.
Sci Rep ; 13(1): 10558, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386046

ABSTRACT

Circulating miR-371a-3p has excellent performance in the detection of viable (non-teratoma) germ cell tumor (GCT) pre-orchiectomy; however, its ability to detect occult disease is understudied. To refine the serum miR-371a-3p assay in the minimal residual disease setting we compared performance of raw (Cq) and normalized (∆Cq, RQ) values from prior assays, and validated interlaboratory concordance by aliquot swapping. Revised assay performance was determined in a cohort of 32 patients suspected of occult retroperitoneal disease. Assay superiority was determined by comparing resulting receiver-operator characteristic (ROC) curves using the Delong method. Pairwise t-tests were used to test for interlaboratory concordance. Performance was comparable when thresholding based on raw Cq vs. normalized values. Interlaboratory concordance of miR-371a-3p was high, but reference genes miR-30b-5p and cel-miR-39-3p were discordant. Introduction of an indeterminate range of Cq 28-35 with a repeat run for any indeterminate improved assay accuracy from 0.84 to 0.92 in a group of patients suspected of occult GCT. We recommend that serum miR-371a-3p test protocols are updated to (a) utilize threshold-based approaches using raw Cq values, (b) continue to include an endogenous (e.g., miR-30b-5p) and exogenous non-human spike-in (e.g., cel-miR-39-3p) microRNA for quality control, and (c) to re-run any sample with an indeterminate result.


Subject(s)
MicroRNAs , Neoplasms, Germ Cell and Embryonal , Teratoma , Humans , MicroRNAs/genetics , Neoplasms, Germ Cell and Embryonal/diagnosis , Neoplasms, Germ Cell and Embryonal/genetics , Biological Assay , Hematologic Tests
10.
Noncoding RNA Res ; 8(3): 413-425, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37305178

ABSTRACT

Background: Wilms tumour (WT) is caused by aberrant embryonic kidney development and associated with dysregulated expression of short, non-protein-coding RNAs termed microRNAs (miRNAs). At present, there is no reliable circulating biomarker of WT, and this remains an urgent unmet clinical need. Such biomarkers may assist diagnosis, subtyping/prognostication, and disease-monitoring. Here, we established the list of dysregulated circulating miRNAs in WT from the existing published literature. Methods: Regardless of publication date, PubMed, Scopus, Web-of-Science, and Wiley online library databases were searched for English/French studies on WT circulating miRNAs. The PRISMA-compliant search was registered in PROSPERO. The QUADAS tool measured retained article quality. The meta-analysis assessed the sensitivity and specificity of miRNAs for WT diagnosis. Results: Qualitative analysis included 280 samples (172 WT patients; 108 healthy controls) from five of 450 published articles. The study uncovered 301 dysregulated miRNAs (144 up-regulated, 143 down-regulated, 14 conflicting). The pooled sensitivity, specificity, and AUC of the 49 significantly dysregulated microRNAs from two studies was 0.67 [0.62; 0.73], 0.95 [0.92; 0.96] and 0.77 [0.73; 0.81] respectively, indicating a stronger diagnostic potential for WT. Conclusions: Circulating miRNAs show promise for WT diagnosis and prognosis. More research is needed to confirm these findings and determine associations with tumour stage/subtype. Prospero registration number: CRD42022301597.

12.
Res Sq ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993198

ABSTRACT

Circulating miR-371a-3p has excellent performance in the detection of viable (non-teratoma) GCT pre-orchiectomy; however, its ability to detect occult disease is understudied. To refine the serum miR-371a-3p assay in the minimal residual disease setting we compared performance of raw (Cq) and normalized (∆Cq, RQ) values from prior assays, and validated interlaboratory concordance by aliquot swapping. Revised assay performance was determined in a cohort of 32 patients suspected of occult retroperitoneal disease. Assay superiority was determined by comparing resulting receiver-operator characteristic (ROC) curves using the Delong method. Pairwise t-tests were used to test for interlaboratory concordance. Performance was comparable when thresholding based on raw Cq vs. normalized values. Interlaboratory concordance of miR-371a-3p was high, but reference genes miR-30b-5p and cel-miR-39-3p were discordant. Introduction of an indeterminate range of Cq 28-35 with a repeat run for any indeterminate improved assay accuracy from 0.84 to 0.92 in a group of patients suspected of occult GCT. We recommend that serum miR-371a-3p test protocols are updated to a) utilize threshold-based approaches using raw Cq values, b) continue to include an endogenous (e.g., miR-30b-5p) and exogenous non-human spike-in (e.g., cel-miR-39-3p) microRNA for quality control, and c) to re-run any sample with an indeterminate result.

13.
Appl Environ Microbiol ; 89(3): e0159022, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36988354

ABSTRACT

Antimicrobial resistance in bacteria is a threat to both human and animal health. We aimed to understand the impact of domestication and antimicrobial treatment on the types and numbers of resistant bacteria, antibiotic resistance genes (ARGs), and class 1 integrons (C1I) in the equine gut microbiome. Antibiotic-resistant fecal bacteria were isolated from wild horses, healthy farm horses, and horses undergoing veterinary treatment, and isolates (9,083 colonies) were screened by PCR for C1I; these were found at frequencies of 9.8% (vet horses), 0.31% (farm horses), and 0.05% (wild horses). A collection of 71 unique C1I+ isolates (17 Actinobacteria and 54 Proteobacteria) was subjected to resistance profiling and genome sequencing. Farm horses yielded mostly C1I+ Actinobacteria (Rhodococcus, Micrococcus, Microbacterium, Arthrobacter, Glutamicibacter, Kocuria), while vet horses primarily yielded C1I+ Proteobacteria (Escherichia, Klebsiella, Enterobacter, Pantoea, Acinetobacter, Leclercia, Ochrobactrum); the vet isolates had more extensive resistance and stronger PC promoters in the C1Is. All integrons in Actinobacteria were flanked by copies of IS6100, except in Micrococcus, where a novel IS5 family element (ISMcte1) was implicated in mobilization. In the Proteobacteria, C1Is were predominantly associated with IS26 and also IS1, Tn21, Tn1721, Tn512, and a putative formaldehyde-resistance transposon (Tn7489). Several large C1I-containing plasmid contigs were retrieved; two of these (plasmid types Y and F) also had extensive sets of metal resistance genes, including a novel copper-resistance transposon (Tn7519). Both veterinary treatment and domestication increase the frequency of C1Is in equine gut microflora, and each of these anthropogenic factors selects for a distinct group of integron-containing bacteria. IMPORTANCE There is increasing acknowledgment that a "one health" approach is required to tackle the growing problem of antimicrobial resistance. This requires that the issue is examined from not only the perspective of human medicine but also includes consideration of the roles of antimicrobials in veterinary medicine and agriculture and recognizes the importance of other ecological compartments in the dissemination of ARGs and mobile genetic elements such as C1I. We have shown that domestication and veterinary treatment increase the frequency of occurrence of C1Is in the equine gut microflora and that, in healthy farm horses, the C1I are unexpectedly found in Actinobacteria, while in horses receiving antimicrobial veterinary treatments, a taxonomic shift occurs, and the more typical integron-containing Proteobacteria are found. We identified several new mobile genetic elements (plasmids, insertion sequences [IS], and transposons) on genomic contigs from the integron-containing equine bacteria.


Subject(s)
DNA Transposable Elements , Domestication , Horses , Animals , Humans , Plasmids , Integrons/genetics , Bacteria/genetics , Anti-Bacterial Agents/pharmacology
14.
Blood ; 141(19): 2343-2358, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36758207

ABSTRACT

Classic Hodgkin lymphoma (cHL) has a rich immune infiltrate, which is an intrinsic component of the neoplastic process. Malignant Hodgkin Reed-Sternberg cells (HRSCs) create an immunosuppressive microenvironment by the expression of regulatory molecules, preventing T-cell activation. It has also been demonstrated that mononuclear phagocytes (MNPs) in the vicinity of HRSCs express similar regulatory mechanisms in parallel, and their presence in tissue is associated with inferior patient outcomes. MNPs in cHL have hitherto been identified by a small number of canonical markers and are usually described as tumor-associated macrophages. The organization of MNP networks and interactions with HRSCs remains unexplored at high resolution. Here, we defined the global immune-cell composition of cHL and nonlymphoma lymph nodes, integrating data across single-cell RNA sequencing, spatial transcriptomics, and multiplexed immunofluorescence. We observed that MNPs comprise multiple subsets of monocytes, macrophages, and dendritic cells (DCs). Classical monocytes, macrophages and conventional DC2s were enriched in the vicinity of HRSCs, but plasmacytoid DCs and activated DCs were excluded. Unexpectedly, cDCs and monocytes expressed immunoregulatory checkpoints PD-L1, TIM-3, and the tryptophan-catabolizing protein IDO, at the same level as macrophages. Expression of these molecules increased with age. We also found that classical monocytes are important signaling hubs, potentially controlling the retention of cDC2 and ThExh via CCR1-, CCR4-, CCR5-, and CXCR3-dependent signaling. Enrichment of the cDC2-monocyte-macrophage network in diagnostic biopsies is associated with early treatment failure. These results reveal unanticipated complexity and spatial polarization within the MNP compartment, further demonstrating their potential roles in immune evasion by cHL.


Subject(s)
Hodgkin Disease , Humans , Hodgkin Disease/diagnosis , Reed-Sternberg Cells/metabolism , Macrophages/metabolism , Monocytes/metabolism , Immunosuppressive Agents , Tumor Microenvironment
15.
Sci Med Footb ; 7(2): 146-156, 2023 05.
Article in English | MEDLINE | ID: mdl-35300580

ABSTRACT

To audit the current provision of performance nutrition services provided to male adolescent players within academies from the English soccer leagues. Practitioners from all 89 academies (status categorised as one-four according to the Elite Player Performance Plan, EPPP) completed an online survey to audit: a) job role/professional accreditation status of persons delivering nutrition support, b) activities inherent to service provision, c) topics of education, d) on-site food, fluid and supplement provision and e) nutritional related data collected for objective monitoring. More full-time accredited nutritionists are employed within category one (14/26) versus category two (0/18), three (1/41) and four (0/4). Respondents from category one clubs report more hours of monthly service delivery (62 ± 57 h) than category two (12 ± 9 h), three (14 ± 26 h) and four (12 ± 14 h), inclusive of one-to-one player support and stakeholder education programmes. Category one practitioners reported a greater prevalence of on-site food, fluid and supplement provision on training and match days. Across all categories, players from the professional development phase receive more frequent support than players from the youth development phase, despite the latter corresponding to the most rapid phase of growth and maturation. We report distinct differences in the extent of service provision provided between categories. Additionally, players from all categories receive nutrition support from non-specialist staff. Data demonstrate that performance nutrition appears an under-resourced component of academy sport science and medicine programmes in England, despite being an integral component of player development.


Subject(s)
Soccer , Adolescent , Humans , Male , England/epidemiology , Nutritional Status , Educational Status
16.
J Pathol ; 259(2): 119-124, 2023 02.
Article in English | MEDLINE | ID: mdl-36426824

ABSTRACT

The FOS gene family has been implicated in tumourigenesis across several tumour types, particularly mesenchymal tumours. The rare fibrous tumour desmoplastic fibroblastoma is characterised by overexpression of FOSL1. However, previous studies using cytogenetic and molecular techniques did not identify an underlying somatic change involving the FOSL1 gene to explain this finding. Prompted by an unusual index case, we report the discovery of a novel FOSL1 rearrangement in desmoplastic fibroblastoma using whole-genome and targeted RNA sequencing. We investigated 15 desmoplastic fibroblastomas and 15 fibromas of tendon sheath using immunohistochemistry, in situ hybridisation and targeted RNA sequencing. Rearrangements in FOSL1 and FOS were identified in 10/15 and 2/15 desmoplastic fibroblastomas respectively, which mirrors the pattern of FOS rearrangements observed in benign bone and vascular tumours. Fibroma of tendon sheath, which shares histological features with desmoplastic fibroblastoma, harboured USP6 rearrangements in 9/15 cases and did not demonstrate rearrangements in any of the four FOS genes. The overall concordance between FOSL1 immunohistochemistry and RNA sequencing results was 90%. These findings illustrate that FOSL1 and FOS rearrangements are a recurrent event in desmoplastic fibroblastoma, establishing this finding as a useful diagnostic adjunct and expanding the spectrum of tumours driven by FOS gene family alterations. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Fibroma, Desmoplastic , Fibroma , Soft Tissue Neoplasms , Humans , Fibroma, Desmoplastic/diagnosis , Fibroma, Desmoplastic/genetics , Fibroma, Desmoplastic/pathology , Fibroma/genetics , Gene Rearrangement , In Situ Hybridization , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Ubiquitin Thiolesterase/genetics
17.
Andrology ; 11(4): 738-755, 2023 05.
Article in English | MEDLINE | ID: mdl-36254403

ABSTRACT

BACKGROUND: Analyses of small non-coding RNA (ncRNA) expression in malignant germ cell tumours (GCTs) have focused on microRNAs (miRNAs). As GCTs all arise from primordial germ cells, and piwi-interacting RNAs (piRNAs) have important roles in maintaining germline integrity via transposon silencing, we hypothesised that malignant GCTs are characterised by fundamental piRNA dysregulation. AIMS: We undertook global small ncRNA sequencing in malignant GCTs, in order to describe small ncRNA expression changes for both miRNAs and piRNAs. MATERIALS AND METHODS: We performed small ncRNA next generation sequencing on a representative panel of 47 samples, comprising malignant GCT (n = 31) and control (n = 16) tissues/cell lines. Following quality control and normalisation, filtered count reads were used for differential miRNA and piRNA expression analyses via DESeq2. Predicted mRNA targets for piRNAs were identified and utilised for pathway enrichment analyses. RESULTS: Overall, miRNAs and piRNAs comprised 21.9% and 43.0% of small ncRNA species, respectively. There were 749 differentially expressed miRNAs in malignant GCTs, of which 536 (72%) were over-expressed and 213 (28%) under-expressed. The top-ranking over-expressed miRNAs were exclusively from the miR-371∼373 and miR-302/367 clusters. The most significantly under-expressed miRNAs were miR-100-5p, miR-214-3p, miR-125b-5p and let-7 family members, including miR-202-3p. There were 1,121 differentially expressed piRNAs in malignant GCTs, of which 167 (15%) were over-expressed and 954 (85%) under-expressed. Of note, of the top-20 differentially expressed piRNAs, 16 were over-expressed, of which piR-hsa-2506793 was both top-ranking and most abundant. Mobile element (ME; i.e., transposon)-associated piRNAs comprised 166 (15%) of the 1,121 differentially expressed piRNAs, of which 165 (>99%) were down-regulated. The remaining 955 (85%) non-ME-associated piRNAs may have wider cellular roles. To explore this, predicted mRNA targets of differentially expressed piRNAs identified putative involvement in cancer-associated pathways. CONCLUSION: This study confirms previous miRNA observations, giving credence to our novel demonstration of global piRNA dysregulation in gonadal malignant GCTs, through both ME and non-ME-associated pathways, which likely contributes to GCT pathogenesis.


Subject(s)
MicroRNAs , Neoplasms, Germ Cell and Embryonal , RNA, Small Untranslated , Humans , Piwi-Interacting RNA , MicroRNAs/genetics , Neoplasms, Germ Cell and Embryonal/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics
18.
Andrology ; 11(4): 634-640, 2023 05.
Article in English | MEDLINE | ID: mdl-36254623

ABSTRACT

INTRODUCTION AND OBJECTIVE: Conventional serum tumor markers (STMs) for testicular germ cell tumors (GCTs) offer limited performance with particularly poor sensitivity in cases of minimal residual disease and pure seminoma. While growing evidence has indicated miR-371a-3p to be a superior biomarker, its utility in detecting pure seminoma at recurrence has not been extensively explored. This study's objective was to explore miR-371a-3p's utility in detecting metastatic pure seminoma at retroperitoneal lymph node dissection (RPLND). METHODS: RNA was isolated from patient serum samples collected pre-RPLND. Fifteen patients were assigned to our 'benign' (n = 6) or 'seminoma' (n = 9) group based on pathological confirmation of viable seminoma. Five of the patients received chemotherapy before RPLND (PC-RPLND), and 10 were chemotherapy naïve. MiR-371a-3p expression was quantified via RT-quantitative polymerase chain reaction. The Cq values were statistically evaluated to obtain performance measurements. RESULTS: Median relative expression of miR-371a-3p was higher in the Seminoma group than the Benign, but this difference was not statistically significant (Rq = 3705 and 241, respectively, p = 0.2844). Of the 10 chemotherapy naïve patients, nine had viable seminoma at RPLND, and seven had elevated miR-371a-3p expression. Among the five postchemotherapy (PC) patients, zero had viable GCT at RPLND, and two had elevated miR-371a-3p expression. The primary RPLND group presented 78% sensitivity and 100% specificity. Specificity in the PC-RPLND group was 60%. An optimal Rq threshold of 28.62 was determined by Youden's J statistic, yielding 78% sensitivity and 67% specificity. Receiver operating characteristic analysis provided an AUC of 0.704 (95% CI: 0.43-0.98, p = 0.1949). Despite modest performance, miR-371a-3p exhibited improved sensitivity and specificity compared with conventional STMs. CONCLUSIONS: MiR-371a-3p outperformed STMs in the primary RPLND settings. However, miR-371a-3p was not a robust predictor of pathology in the PC setting. These results suggest that pure seminoma at RPLND is a clinical context, wherein the miRNA assay may require further refinement.


Subject(s)
MicroRNAs , Neoplasms, Germ Cell and Embryonal , Seminoma , Testicular Neoplasms , Male , Humans , MicroRNAs/genetics , Testicular Neoplasms/genetics , Testicular Neoplasms/surgery , Testicular Neoplasms/drug therapy , Lymph Node Excision , Biomarkers, Tumor/genetics , Seminoma/genetics , Seminoma/surgery , Seminoma/pathology , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/surgery
19.
Eur J Cancer ; 176: 133-154, 2022 11.
Article in English | MEDLINE | ID: mdl-36215946

ABSTRACT

MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.


Subject(s)
MicroRNAs , Neoplasms , Humans , Child , Gene Expression Regulation, Neoplastic , Neoplasms/therapy , Oncogenes , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...