Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Clin Endocrinol Metab ; 108(6): 1452-1463, 2023 05 17.
Article in English | MEDLINE | ID: mdl-36504388

ABSTRACT

OBJECTIVE: To explore pituitary tumors by methylome and transcriptome signatures in a heterogeneous ethnic population. METHODS: In this retrospective cross-sectional study, clinicopathological features, methylome, and transcriptome were evaluated in pituitary tumors from 77 patients (61% women, age 12-72 years) followed due to functioning (FPT: GH-secreting n = 18, ACTH-secreting n = 14) and nonfunctioning pituitary tumors (NFPT, n = 45) at Ribeirao Preto Medical School, University of São Paulo. RESULTS: Unsupervised hierarchical clustering analysis (UHCA) of methylome (n = 77) and transcriptome (n = 65 out of 77) revealed 3 clusters each: one enriched by FPT, one by NFPT, and a third by ACTH-secreting and NFPT. Comparison between each omics-derived clusters identified 3568 and 5994 differentially methylated and expressed genes, respectively, which were associated with each other, with tumor clinical presentation, and with 2017 and 2022 WHO classifications. UHCA considering 11 transcripts related to pituitary development/differentiation also supported 3 clusters: POU1F1-driven somatotroph, TBX19-driven corticotroph, and NR5A1-driven gonadotroph adenomas, with rare exceptions (NR5A1 expressed in few GH-secreting and corticotroph silent adenomas; POU1F1 in few ACTH-secreting adenomas; and TBX19 in few NFPTs). CONCLUSION: This large heterogenic ethnic Brazilian cohort confirms that integrated methylome and transcriptome signatures classify FPT and NFPT, which are associated with clinical presentation and tumor invasiveness. Moreover, the cluster NFPT/ACTH-secreting adenomas raises interest regarding tumor heterogeneity, supporting the challenge raised by the 2017 and 2022 WHO definition regarding the discrepancy, in rare cases, between clinical presentation and pituitary lineage markers. Finally, making our data publicly available enables further studies to validate genes/pathways involved in pituitary tumor pathogenesis and prognosis.


Subject(s)
ACTH-Secreting Pituitary Adenoma , Adenoma , Pituitary Neoplasms , Humans , Female , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Male , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Adenoma/genetics , Adenoma/pathology , Epigenome , Transcriptome , Retrospective Studies , Cross-Sectional Studies , ACTH-Secreting Pituitary Adenoma/genetics , Adrenocorticotropic Hormone/genetics
2.
Nat Genet ; 54(8): 1103-1116, 2022 08.
Article in English | MEDLINE | ID: mdl-35835913

ABSTRACT

The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity. In our analysis of patients of European (n = 2,249) and African (n = 835) ancestries with hospitalized versus nonhospitalized COVID-19, the risk of hospitalized disease was associated with a common OAS1 haplotype, which was also associated with reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance in a clinical trial with pegIFN-λ1. Bioinformatic analyses and in vitro studies reveal the functional contribution of two associated OAS1 exonic variants comprising the risk haplotype. Derived human-specific alleles rs10774671-A and rs1131454 -A decrease OAS1 protein abundance through allele-specific regulation of splicing and nonsense-mediated decay (NMD). We conclude that decreased OAS1 expression due to a common haplotype contributes to COVID-19 severity. Our results provide insight into molecular mechanisms through which early treatment with interferons could accelerate SARS-CoV-2 clearance and mitigate against severe COVID-19.


Subject(s)
COVID-19 , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , Alleles , COVID-19/genetics , Hospitalization , Humans , SARS-CoV-2/genetics
3.
Eur J Endocrinol ; 187(2): 219-230, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35584004

ABSTRACT

Objectives: To evaluate how telomere length behaves in adamantinomtous craniopharyngioma (aCP) and if it contributes to the pathogenesis of aCPs with and without CTNNB1 mutations. Design: Retrospective cross-sectional study enrolling 42 aCP patients from 2 tertiary institutions. Methods: Clinicopathological features were retrieved from the patient's charts. Fresh frozen tumors were used for RNA and DNA analyses. Telomere length was evaluated by qPCR (T/S ratio). Somatic mutations in TERT promoter (TERTp) and CTNNB1 were detected by Sanger and/or whole-exome sequencing. We performed RNA-Seq to identify differentially expressed genes in aCPs presenting with shorter or longer telomere lengths. Results: Mutations in CTNNB1 were detected in 29 (69%) tumors. There was higher frequency of CTNNB1 mutations in aCPs from patients diagnosed under the age of 15 years (85% vs 15%; P = 0.04) and a trend to recurrent disease (76% vs 24%; P = 0.1). No mutation was detected in the TERTp region. The telomeres were shorter in CTNNB1-mutated aCPs (0.441, IQR: 0.297-0.597vs 0.607, IQR: 0.445-0.778; P = 0.04), but it was neither associated with clinicopathological features nor with recurrence. RNAseq identified a total of 387 differentially expressed genes, generating two clusters, being one enriched for short telomeres and CTNNB1-mutated aCPs. Conclusions: CTNNB1: mutations are more frequent in children and adolescents and appear to associate with progressive disease. CTNNB1-mutated aCPs have shorter telomeres, demonstrating a relationship between the Wnt/ß-catenin pathway and telomere biology in the pathogenesis of aCPs.


Subject(s)
Craniopharyngioma , Telomere , beta Catenin , Adolescent , Child , Craniopharyngioma/genetics , Cross-Sectional Studies , Humans , Mutation , Retrospective Studies , Telomere/ultrastructure , Wnt Signaling Pathway , beta Catenin/genetics
4.
Front Immunol ; 13: 836922, 2022.
Article in English | MEDLINE | ID: mdl-35386696

ABSTRACT

Tumor cells present many strategies for survival and dissemination in the tumor environment. Extracellular vesicles are a vital pathway used in crosstalk between tumor and non-malignant cells. They carry different types of molecules that, when internalized by target cells, can activate signaling pathways and molecular processes that will promote and disseminate neoplastic cells. Proteins, nucleic acids, and different cytokines, such as interleukins, are the main classes of molecules carried by extracellular vesicles and are being studied to understand the molecular mechanisms present in the tumor microenvironment. In particular, although poorly understood, the association between EVs and interleukins has revealed potential approaches to the diagnosis and therapeutics of several neoplasms.


Subject(s)
Extracellular Vesicles , Neoplasms , Extracellular Vesicles/metabolism , Humans , Interleukins/metabolism , Neoplasms/drug therapy , Neoplasms/therapy , Signal Transduction , Tumor Microenvironment
5.
Hematol Transfus Cell Ther ; 43 Suppl 2: S78-S83, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34794801

ABSTRACT

The use of immunotherapy in cancer treatment over the past decade has resulted in significant advances and improvements in cancer patients survival with the use of checkpoint inhibitors. Nevertheless, only a fraction of solid tumors responds to this immunotherapy modality. Another modality of immunotherapy consists of employing cell-based therapy as an adoptive therapeutic modality. That involves distinct modalities of cellular therapies such as CAR T cells (chimeric antigen receptor T cell), TILs (tumor-infiltrating lymphocytes), and TCR T cells. Those treatments have proven effective in hematologic tumors and could have an impact in tumors that do not respond to checkpoint inhibitors. This review aims to outline the rationale, operation, clinical applicability, and results of adoptive cell therapy for patients with solid tumors.

6.
Am J Hum Genet ; 108(9): 1590-1610, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34390653

ABSTRACT

Our study investigated the underlying mechanism for the 14q24 renal cell carcinoma (RCC) susceptibility risk locus identified by a genome-wide association study (GWAS). The sentinel single-nucleotide polymorphism (SNP), rs4903064, at 14q24 confers an allele-specific effect on expression of the double PHD fingers 3 (DPF3) of the BAF SWI/SNF complex as assessed by massively parallel reporter assay, confirmatory luciferase assays, and eQTL analyses. Overexpression of DPF3 in renal cell lines increases growth rates and alters chromatin accessibility and gene expression, leading to inhibition of apoptosis and activation of oncogenic pathways. siRNA interference of multiple DPF3-deregulated genes reduces growth. Our results indicate that germline variation in DPF3, a component of the BAF complex, part of the SWI/SNF complexes, can lead to reduced apoptosis and activation of the STAT3 pathway, both critical in RCC carcinogenesis. In addition, we show that altered DPF3 expression in the 14q24 RCC locus could influence the effectiveness of immunotherapy treatment for RCC by regulating tumor cytokine secretion and immune cell activation.


Subject(s)
Carcinoma, Renal Cell/genetics , Chromosomes, Human, Pair 14 , DNA-Binding Proteins/genetics , Genetic Loci , Kidney Neoplasms/genetics , STAT3 Transcription Factor/genetics , Transcription Factors/genetics , Carcinogenesis/genetics , Carcinogenesis/immunology , Carcinogenesis/pathology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/therapy , Cell Line, Tumor , Chromatin/chemistry , Chromatin/immunology , Chromatin Assembly and Disassembly/immunology , Cytokines/genetics , Cytokines/immunology , DNA-Binding Proteins/immunology , Gene Expression Regulation , Genetic Predisposition to Disease , Genome, Human , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Immunotherapy/methods , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Polymorphism, Single Nucleotide , STAT3 Transcription Factor/immunology , T-Lymphocytes, Cytotoxic , Transcription Factors/immunology
7.
Science ; 372(6543): 725-729, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33888597

ABSTRACT

Effects of radiation exposure from the Chernobyl nuclear accident remain a topic of interest. We investigated germline de novo mutations (DNMs) in children born to parents employed as cleanup workers or exposed to occupational and environmental ionizing radiation after the accident. Whole-genome sequencing of 130 children (born 1987-2002) and their parents did not reveal an increase in the rates, distributions, or types of DNMs relative to the results of previous studies. We find no elevation in total DNMs, regardless of cumulative preconception gonadal paternal [mean = 365 milligrays (mGy), range = 0 to 4080 mGy] or maternal (mean = 19 mGy, range = 0 to 550 mGy) exposure to ionizing radiation. Thus, we conclude that, over this exposure range, evidence is lacking for a substantial effect on germline DNMs in humans, suggesting minimal impact from transgenerational genetic effects.

8.
Transl Oncol ; 14(1): 100970, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33260070

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) remains a challenging cancer to treat despite all the advances of the last 50 years. Kallikrein 5 (KLK5) is among the serine proteases implicated in OSCC development. However, whether the activity of KLK5 promotes carcinogenesis is still controversial. Moreover, knowledge regarding the role of the KLK5 cognate inhibitor, Lympho-Epithelial Kazal-Type related Inhibitor (LEKTI), in OSCC is scarce. We have, thus, sought to investigate the importance of KLK5 and LEKTI expression in premalignant and malignant lesions of the oral cavity. METHODS: KLK5 and LEKTI protein expression was evaluated in 301 human samples, which were comprised of non-malignant and malignant lesions of the oral cavity. Moreover, a bioinformatic analysis of the overall survival rate from 517 head and neck squamous cell carcinoma (HNSCC) samples was performed. Additionally, to mimic the uncovered KLK5 to serine peptidase inhibitor (SPINK5) imbalance, the KLK5 gene was abrogated in an OSCC cell line using CRISPR-Cas9 technology. The generated cell line was then used for in vivo and in vitro carcinogenesis related experiments. RESULTS: LEKTI was found to be statistically downregulated in OSCCs, with increased KLK5/SPINK5 mRNA ratio being associated with a shorter overall survival (p = 0.091). Indeed, disruption of KLK5 to SPINK5 balance through the generation of KLK5 null OSCC cells led to smaller xenografted tumors and statistically decreased proliferation rates following multiple time points of BrdU treatment in vitro. CONCLUSION: The association of increased enzyme/inhibitor ratio with poor prognosis indicates KLK5 to SPINK5 relative expression as an important prognostic marker in OSCC.

9.
Nat Genet ; 52(12): 1333-1345, 2020 12.
Article in English | MEDLINE | ID: mdl-33230299

ABSTRACT

Genome-wide association studies identify genomic variants associated with human traits and diseases. Most trait-associated variants are located within cell-type-specific enhancers, but the molecular mechanisms governing phenotypic variation are less well understood. Here, we show that many enhancer variants associated with red blood cell (RBC) traits map to enhancers that are co-bound by lineage-specific master transcription factors (MTFs) and signaling transcription factors (STFs) responsive to extracellular signals. The majority of enhancer variants reside on STF and not MTF motifs, perturbing DNA binding by various STFs (BMP/TGF-ß-directed SMADs or WNT-induced TCFs) and affecting target gene expression. Analyses of engineered human blood cells and expression quantitative trait loci verify that disrupted STF binding leads to altered gene expression. Our results propose that the majority of the RBC-trait-associated variants that reside on transcription-factor-binding sequences fall in STF target sequences, suggesting that the phenotypic variation of RBC traits could stem from altered responsiveness to extracellular stimuli.


Subject(s)
Erythrocytes/physiology , Gene Expression Regulation/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Transcription Factors/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic/genetics , Erythrocytes/cytology , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Quantitative Trait Loci/genetics , Smad1 Protein/genetics , Smad1 Protein/metabolism , Transcription Factors/metabolism , Transcription, Genetic/genetics
10.
Nat Commun ; 11(1): 2718, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483191

ABSTRACT

Genome-wide association studies (GWAS) have identified ~20 melanoma susceptibility loci, most of which are not functionally characterized. Here we report an approach integrating massively-parallel reporter assays (MPRA) with cell-type-specific epigenome and expression quantitative trait loci (eQTL) to identify susceptibility genes/variants from multiple GWAS loci. From 832 high-LD variants, we identify 39 candidate functional variants from 14 loci displaying allelic transcriptional activity, a subset of which corroborates four colocalizing melanocyte cis-eQTL genes. Among these, we further characterize the locus encompassing the HIV-1 restriction gene, MX2 (Chr21q22.3), and validate a functional intronic variant, rs398206. rs398206 mediates the binding of the transcription factor, YY1, to increase MX2 levels, consistent with the cis-eQTL of MX2 in primary human melanocytes. Melanocyte-specific expression of human MX2 in a zebrafish model demonstrates accelerated melanoma formation in a BRAFV600E background. Our integrative approach streamlines GWAS follow-up studies and highlights a pleiotropic function of MX2 in melanoma susceptibility.


Subject(s)
Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Melanoma/genetics , Mutation , Myxovirus Resistance Proteins/genetics , Polymorphism, Single Nucleotide , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation , Genes, Reporter/genetics , HEK293 Cells , Humans , Melanocytes/metabolism , Melanoma/pathology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Quantitative Trait Loci/genetics , Zebrafish/genetics , Zebrafish/metabolism
11.
J Hum Genet ; 64(6): 545-550, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30850729

ABSTRACT

Mosaic protein truncating variants (PTVs) in the phosphatase, Mg2+/Mn2+dependent 1D (PPM1D) gene in blood-derived DNA have been associated with increased risk of breast cancer. We analyzed PPM1D PTVs in blood from 3817 breast cancer cases and 3058 controls by deep sequencing of a previously defined region in exon 6 of PPM1D. We identified 50 of 6875 (0.73%) participants having a mosaic PPM1D PTV. We observed a higher frequency of mosaic PPM1D PTVs with increasing age (Ptrend = 2.9 × 10-6). We did not observe an overall association between PPM1D PTVs and increased breast cancer risk (OR = 1.51, 95% CI = 0.84-2.71). Evidence for an association was observed in a subset of cases with DNA collected 1-year or more before breast cancer diagnosis (OR = 3.44, 95% CI = 1.62-7.30, P-value = 0.001); however, no significant association was observed for the larger series of cases with DNA collected post diagnosis (OR = 1.01, 95% CI = 0.51-2.01, P-value = 0.98). Our study indicates that the PPM1D PTVs are present at higher rates than previously reported and the frequency of PPM1D PTVs increases with age. We observed limited evidence for an association between mosaic PPM1D PTVs and breast cancer risk, suggesting mosaic PPM1D PTVs in the blood likely do not influence risk of breast cancer.


Subject(s)
Aging/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Protein Phosphatase 2C/genetics , Aged , Aging/pathology , Breast Neoplasms/pathology , Exons , Female , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Mutation , Risk Factors
12.
PLoS Med ; 16(1): e1002724, 2019 01.
Article in English | MEDLINE | ID: mdl-30605491

ABSTRACT

BACKGROUND: Several obesity-related factors have been associated with renal cell carcinoma (RCC), but it is unclear which individual factors directly influence risk. We addressed this question using genetic markers as proxies for putative risk factors and evaluated their relation to RCC risk in a mendelian randomization (MR) framework. This methodology limits bias due to confounding and is not affected by reverse causation. METHODS AND FINDINGS: Genetic markers associated with obesity measures, blood pressure, lipids, type 2 diabetes, insulin, and glucose were initially identified as instrumental variables, and their association with RCC risk was subsequently evaluated in a genome-wide association study (GWAS) of 10,784 RCC patients and 20,406 control participants in a 2-sample MR framework. The effect on RCC risk was estimated by calculating odds ratios (ORSD) for a standard deviation (SD) increment in each risk factor. The MR analysis indicated that higher body mass index increases the risk of RCC (ORSD: 1.56, 95% confidence interval [CI] 1.44-1.70), with comparable results for waist-to-hip ratio (ORSD: 1.63, 95% CI 1.40-1.90) and body fat percentage (ORSD: 1.66, 95% CI 1.44-1.90). This analysis further indicated that higher fasting insulin (ORSD: 1.82, 95% CI 1.30-2.55) and diastolic blood pressure (DBP; ORSD: 1.28, 95% CI 1.11-1.47), but not systolic blood pressure (ORSD: 0.98, 95% CI 0.84-1.14), increase the risk for RCC. No association with RCC risk was seen for lipids, overall type 2 diabetes, or fasting glucose. CONCLUSIONS: This study provides novel evidence for an etiological role of insulin in RCC, as well as confirmatory evidence that obesity and DBP influence RCC risk.


Subject(s)
Carcinoma, Renal Cell/etiology , Kidney Neoplasms/etiology , Obesity/complications , Blood Glucose/analysis , Blood Pressure , Body Mass Index , Carcinoma, Renal Cell/genetics , Diabetes Mellitus, Type 2/complications , Female , Genetic Markers , Genome-Wide Association Study , Humans , Insulin/blood , Kidney Neoplasms/genetics , Lipids/blood , Male , Mendelian Randomization Analysis , Obesity/genetics , Risk Factors
13.
J Endocrinol ; 235(2): 123-136, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28870994

ABSTRACT

Elongation factor, RNA polymerase II, 2 (ELL2) is an RNA Pol II elongation factor with functional properties similar to ELL that can interact with the prostate tumor suppressor EAF2. In the prostate, ELL2 is an androgen response gene that is upregulated in benign prostatic hyperplasia (BPH). We recently showed that ELL2 loss could enhance prostate cancer cell proliferation and migration, and that ELL2 gene expression was downregulated in high Gleason score prostate cancer specimens. Here, prostate-specific deletion of ELL2 in a mouse model revealed a potential role for ELL2 as a prostate tumor suppressor in vivoEll2-knockout mice exhibited prostatic defects including increased epithelial proliferation, vascularity and PIN lesions similar to the previously determined prostate phenotype in Eaf2-knockout mice. Microarray analysis of prostates from Ell2-knockout and wild-type mice on a C57BL/6J background at age 3 months and qPCR validation at 17 months of age revealed a number of differentially expressed genes associated with proliferation, cellular motility and epithelial and neural differentiation. OncoPrint analysis identified combined downregulation or deletion in prostate adenocarcinoma cases from the Cancer Genome Atlas (TCGA) data portal. These results suggest that ELL2 and its pathway genes likely play an important role in the development and progression of prostate cancer.


Subject(s)
Prostatic Neoplasms/genetics , Transcriptional Elongation Factors/metabolism , Animals , Cell Line, Tumor , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Knockout , Protein Array Analysis , Reproducibility of Results , Transcriptional Elongation Factors/genetics
14.
Nat Commun ; 8: 15724, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28598434

ABSTRACT

Previous genome-wide association studies (GWAS) have identified six risk loci for renal cell carcinoma (RCC). We conducted a meta-analysis of two new scans of 5,198 cases and 7,331 controls together with four existing scans, totalling 10,784 cases and 20,406 controls of European ancestry. Twenty-four loci were tested in an additional 3,182 cases and 6,301 controls. We confirm the six known RCC risk loci and identify seven new loci at 1p32.3 (rs4381241, P=3.1 × 10-10), 3p22.1 (rs67311347, P=2.5 × 10-8), 3q26.2 (rs10936602, P=8.8 × 10-9), 8p21.3 (rs2241261, P=5.8 × 10-9), 10q24.33-q25.1 (rs11813268, P=3.9 × 10-8), 11q22.3 (rs74911261, P=2.1 × 10-10) and 14q24.2 (rs4903064, P=2.2 × 10-24). Expression quantitative trait analyses suggest plausible candidate genes at these regions that may contribute to RCC susceptibility.


Subject(s)
Carcinoma, Renal Cell/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Kidney Neoplasms/genetics , Adolescent , Adult , Aged , Female , Genetic Loci , Germ-Line Mutation , Humans , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , White People/genetics , Young Adult
15.
Cancer Res ; 77(13): 3666-3671, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28446466

ABSTRACT

Cancer treatments composed of immune checkpoint inhibitors and oncogene-targeted drugs might improve cancer management, but there has been little investigation of their combined potential as yet. To estimate the fraction of cancer cases that might benefit from such combination therapy, we conducted an exploratory study of cancer genomic datasets to determine the proportion with somatic mutation profiles amenable to either immunotherapy or targeted therapy. We surveyed 13,349 genomic profiles from public databases for cases with specific mutations targeted by current agents or a burden of exome-wide nonsynonymous mutations (NsM) that exceed a proposed threshold for response to checkpoint inhibitors. Overall, 8.9% of cases displayed profiles that could benefit from combination therapy, which corresponded to approximately 11.2% of U.S. annual incident cancer cases. Frequently targetable mutations were in PIK3CA, BRAF, NF1, NRAS, and PTEN We also noted a high burden of NsM in cases with targetable mutations in SMO, DDR2, FGFR1, PTCH1, FGFR2, and MET Our results indicate that a significant proportion of solid tumor patients are eligible for immuno-targeted combination therapy, and they suggest prioritizing specific cancers for trials of certain targeted and checkpoint inhibitor drugs. Cancer Res; 77(13); 3666-71. ©2017 AACR.


Subject(s)
Immunotherapy/methods , Neoplasms/therapy , Combined Modality Therapy , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/immunology
16.
Nat Commun ; 7: 12098, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27384883

ABSTRACT

Genome-wide association studies have identified multiple renal cell carcinoma (RCC) susceptibility loci. Here, we use regional imputation and bioinformatics analysis of the 12p12.1 locus to identify the single-nucleotide polymorphism (SNP) rs7132434 as a potential functional variant. Luciferase assays demonstrate allele-specific regulatory activity and, together with data from electromobility shift assays, suggest allele-specific differences at rs7132434 for AP-1 transcription factor binding. In an analysis of The Cancer Genome Atlas data, SNPs highly correlated with rs7132434 show allele-specific differences in BHLHE41 expression (trend P value=6.3 × 10(-7)). Cells overexpressing BHLHE41 produce larger mouse xenograft tumours, while RNA-seq analysis reveals that constitutively increased BHLHE41 induces expression of IL-11. We conclude that the RCC risk allele at 12p12.1 maps to rs7132434, a functional variant in an enhancer that upregulates BHLHE41 expression which, in turn, induces IL-11, a member of the IL-6 cytokine family.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Renal Cell/genetics , Chromosomes, Human, Pair 12/chemistry , Genetic Loci , Genetic Predisposition to Disease , Interleukin-11/genetics , Kidney Neoplasms/genetics , Alleles , Animals , Atlases as Topic , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Chromosomes, Human, Pair 12/metabolism , Computational Biology , Humans , Interleukin-11/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Mice , Neoplasm Transplantation , Polymorphism, Single Nucleotide , Protein Binding , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
17.
Cancer Res ; 76(13): 3767-72, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27197178

ABSTRACT

Immune checkpoint inhibitor treatment represents a promising approach toward treating cancer and has been shown to be effective in a subset of melanoma, non-small cell lung cancer (NSCLC), and kidney cancers. Recent studies have suggested that the number of nonsynonymous mutations (NsM) can be used to select melanoma and NSCLC patients most likely to benefit from checkpoint inhibitor treatment. It is hypothesized that a higher burden of NsM generates novel epitopes and gene products, detected by the immune system as foreign. We conducted an assessment of NsM across 7,757 tumor samples drawn from 26 cancers sequenced in the Cancer Genome Atlas (TCGA) Project to estimate the subset of cancers (both types and fractions thereof) that fit the profile suggested for melanoma and NSCLC. An additional independent set of 613 tumors drawn from 5 cancers were analyzed for replication. An analysis of the receiver operating characteristic curves of published data on checkpoint inhibitor response in melanoma and NSCLC data estimates a cutoff of 192 NsM with 74% sensitivity and 59.3% specificity to discriminate potential clinical benefit. Across the 7,757 samples of TCGA, 16.2% displayed an NsM count that exceeded the threshold of 192. It is notable that more than 30% of bladder, colon, gastric, and endometrial cancers have NsM counts above 192, which was also confirmed in melanoma and NSCLC. Our data could inform the prioritization of tumor types (and subtypes) for possible clinical trials to investigate further indications for effective use of immune checkpoint inhibitors, particularly in adult cancers. Cancer Res; 76(13); 3767-72. ©2016 AACR.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , Cell Cycle Checkpoints/genetics , Mutation/genetics , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Humans , Neoplasm Staging , Neoplasms/genetics , Neoplasms/immunology , Prognosis , Tumor Cells, Cultured
18.
PLoS One ; 10(2): e0117107, 2015.
Article in English | MEDLINE | ID: mdl-25658813

ABSTRACT

INTRODUCTION: Patients with germline AIP mutations or low AIP protein expression have large, invasive somatotroph adenomas and poor response to somatostatin analogues (SSA). METHODS: To study the mechanism of low AIP protein expression 31 sporadic somatotropinomas with low (n = 13) or high (n = 18) AIP protein expression were analyzed for expression of AIP messenger RNA (mRNA) and 11 microRNAs (miRNAs) predicted to bind the 3'UTR of AIP. Luciferase reporter assays of wild-type and deletion constructs of AIP-3'UTR were used to study the effect of the selected miRNAs in GH3 cells. Endogenous AIP protein and mRNA levels were measured after miRNA over- and underexpression in HEK293 and GH3 cells. RESULTS: No significant difference was observed in AIP mRNA expression between tumors with low or high AIP protein expression suggesting post-transcriptional regulation. miR-34a was highly expressed in low AIP protein samples compared high AIP protein adenomas and miR-34a levels were inversely correlated with response to SSA therapy. miR-34a inhibited the luciferase-AIP-3'UTR construct, suggesting that miR-34a binds to AIP-3'UTR. Deletion mutants of the 3 different predicted binding sites in AIP-3'UTR identified the c.*6-30 site to be involved in miR-34a's activity. miR-34a overexpression in HEK293 and GH3 cells resulted in inhibition of endogenous AIP protein expression. CONCLUSION: Low AIP protein expression is associated with high miR-34a expression. miR-34a can down-regulate AIP-protein but not RNA expression in vitro. miR-34a is a negative regulator of AIP-protein expression and could be responsible for the low AIP expression observed in somatotropinomas with an invasive phenotype and resistance to SSA.


Subject(s)
Gene Expression Regulation, Neoplastic , Growth Hormone-Secreting Pituitary Adenoma/pathology , Intracellular Signaling Peptides and Proteins/metabolism , MicroRNAs/metabolism , Pituitary Neoplasms/pathology , Adult , Animals , Base Sequence , Binding Sites , Cell Line, Tumor , Female , Growth Hormone-Secreting Pituitary Adenoma/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Keratins/metabolism , Male , MicroRNAs/chemistry , Middle Aged , Neoplasm Invasiveness , Pituitary Neoplasms/genetics , RNA, Messenger/metabolism , Rats , Sequence Alignment
19.
Clin Endocrinol (Oxf) ; 82(5): 739-46, 2015 May.
Article in English | MEDLINE | ID: mdl-25418156

ABSTRACT

OBJECTIVES: To determine the dopamine receptor subtype 2 (DR2) mRNA levels and protein expression and to evaluate the effect of adjuvant cabergoline therapy on tumour volume (TV) in patients with postoperative residual nonfunctioning pituitary adenoma (NFPA). METHODS: The mRNA expression was quantified by real-time RT-PCR (TaqMan(®)), and protein expression was evaluated by immunohistochemistry. Tumours were classified according to the percentage of immunostained cells for DR2 as scores 1 (<50% of stained cells) or 2 (≥50%). Cabergoline was started at least 6 months after surgery in nine patients with residual tumours (3 mg/week). The cabergoline effect was prospectively evaluated by magnetic resonance imaging using three-dimensional volume calculation. TV reduction >25% was considered significant. RESULTS: The DR2 mRNA expression was variable but was observed in 100% of the samples (N = 20). DR2 protein expression was also observed in all the tumours (N = 34). Twenty-nine tumours (85%) were classified as score 2. The median DR2 mRNA expression was higher in the tumours classified as score 2 compared with score 1 (P = 0·007). TV reduction with cabergoline therapy was observed in 67% of the patients (6/9). The median TV before and after 6 months of treatment was 1·90 cm(3) (0·61-8·74) and 1·69 cm(3) (0·36-4·20) [P = 0·02], respectively. CONCLUSION: In conclusion, DR2 is expressed in all adenomas and the majority of the patients in this study displayed tumour shrinkage on cabergoline (CAB) therapy. Thus, CAB might be useful in adjuvant therapy in NFPA patients with residual tumours after surgery.


Subject(s)
Adenoma/drug therapy , Adenoma/metabolism , Ergolines/therapeutic use , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/metabolism , Receptors, Dopamine D2/metabolism , Adult , Aged , Antineoplastic Agents/therapeutic use , Cabergoline , Female , Gene Expression Regulation, Neoplastic , Humans , Ki-67 Antigen/metabolism , Magnetic Resonance Imaging , Male , Middle Aged , Pituitary Gland/metabolism , RNA, Messenger/metabolism , Treatment Outcome
20.
Clin Endocrinol (Oxf) ; 81(4): 503-10, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24717047

ABSTRACT

CONTEXT: The role of planar cell polarity (Wnt/PCP) and calcium-dependent (Wnt/Ca) noncanonical Wnt pathways in adrenocortical tumours (ACTs) is unknown. OBJECTIVES: To investigate the gene expression of Wnt/PCP and Wnt/Ca pathways and its association with TP53 p.R337H and CTNNB1 mutations in paediatric and adult ACTs and to correlate these findings with clinical outcome. PATIENTS: Expression of noncanonical Wnt-related genes was evaluated in 91 ACTs (66 children and 25 adults) by qPCR and the expression of beta-catenin, P53 and protein effectors of Wnt/Ca (NFAT) and Wnt/PCP (JNK) by immunohistochemistry. TP53 and CTNNB1 genes were sequenced. RESULTS: TP53 p.R337H mutation frequency was higher in children (86% vs 28%), while CTNNB1 mutation was higher in adults (32% vs 6%). Mortality was higher in adults harbouring TP53 p.R337H and in children with CTNNB1 mutations. Overexpression of WNT5A, Wnt/Ca ligand, was observed in children and adults. Overexpression of MAPK8 and underexpression of PRICKLE, Wnt/PCP mediators, were observed in paediatric but not in adult cases. Cytoplasmic/nuclear beta-catenin and P53 accumulation was observed in the majority of paediatric and adult ACTs as well as NFAT and JNK. Overexpression of MAPK8 and underexpression of PRICKLE were associated with mortality in children, while overexpression of WNT5A and underexpression of PRICKLE were associated with mortality in adults. CONCLUSIONS: In our study, TP53 p.R337H and CTNNB1 mutations correlated with poor prognosis in adults and children, respectively. We demonstrate, for the first time, the activation of Wnt/PCP and Wnt/Ca noncanonical pathway genes, and their association with poor outcome in children and adults, suggesting their putative involvement in ACTs aggressiveness.


Subject(s)
Adrenal Cortex Neoplasms/metabolism , Wnt Signaling Pathway/physiology , Adolescent , Adrenal Cortex Neoplasms/genetics , Adult , Aged , Child , Child, Preschool , Female , Humans , Immunohistochemistry , Infant , Male , Middle Aged , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wnt Signaling Pathway/genetics , Young Adult , beta Catenin/genetics , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...