Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 12(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37237485

ABSTRACT

The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.

2.
ACS Appl Mater Interfaces ; 15(23): 27600-27611, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37249914

ABSTRACT

We report for the first time the controlled drug release from a nanoscale Zr-based metal-organic framework (MOF), UiO-66, in the presence of the enzyme alkaline phosphatase (ALP). This unprecedented reactivity was possible thanks to the prior functionalization of the MOF with N3-PEG-PO3 ligands, which were designed for three specific aims: (1) to impart colloidal stability in phosphate-containing media; (2) to endow the MOF with multifunctionality thanks to azide groups for the covalent attachment of an imaging agent by click-chemistry; and (3) to confer stimuli-responsive properties, specifically the selective release of doxorubicin triggered by the enzymatic activity of ALP. Cell studies revealed that the functionalization of the MOF with N3-(PEG)20-PO3 ligands improved their intracellular stability and led to a sustained drug release compared to the bare MOF. More importantly, an enhanced drug release was observed in cells with higher expression of ALP genes (HeLa versus MDA-MB-231 and MCF7), confirming the ALP-responsiveness of the system inside living cells.


Subject(s)
Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Phosphates , Ligands , Drug Delivery Systems , Doxorubicin/pharmacology , Doxorubicin/chemistry , Drug Liberation
3.
iScience ; 25(5): 104345, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35602948

ABSTRACT

LRH-1/NR5A2 is implicated in islet morphogenesis postnatally, and its activation using the agonist BL001 protects islets against apoptosis, reverting hyperglycemia in mouse models of Type 1 Diabetes Mellitus. Islet transcriptome profiling revealed that the expression of PTGS2/COX2 is increased by BL001. Herein, we sought to define the role of LRH-1 in postnatal islet morphogenesis and chart the BL001 mode of action conferring beta cell protection. LRH-1 ablation within developing beta cells impeded beta cell proliferation, correlating with mouse growth retardation, weight loss, and hypoglycemia leading to lethality. LRH-1 deletion in adult beta cells abolished the BL001 antidiabetic action, correlating with beta cell destruction and blunted Ptgs2 induction. Islet PTGS2 inactivation led to reduced PGE2 levels and loss of BL001 protection against cytokines as evidenced by increased cytochrome c release and cleaved-PARP. The PTGER1 antagonist-ONO-8130-negated BL001-mediated islet survival. Our results define the LRH-1/PTGS2/PGE2/PTGER1 signaling axis as a key pathway mediating BL001 survival properties.

4.
Cancer Res ; 82(6): 1084-1097, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35045985

ABSTRACT

Cancer therapy often results in heterogeneous responses in different metastatic lesions in the same patient. Inter- and intratumor heterogeneity in signaling within various tumor compartments and its impact on therapy are not well characterized due to the limited sensitivity of single-cell proteomic approaches. To overcome this barrier, we applied single-cell mass cytometry with a customized 26-antibody panel to PTEN-deleted orthotopic prostate cancer xenograft models to measure the evolution of kinase activities in different tumor compartments during metastasis or drug treatment. Compared with primary tumors and circulating tumor cells (CTC), bone metastases, but not lung and liver metastases, exhibited elevated PI3K/mTOR signaling and overexpressed receptor tyrosine kinases (RTK) including c-MET protein. Suppression of c-MET impaired tumor growth in the bone. Intratumoral heterogeneity within tumor compartments also arose from highly proliferative EpCAM-high epithelial cells with increased PI3K and mTOR kinase activities coexisting with poorly proliferating EpCAM-low mesenchymal populations with reduced kinase activities; these findings were recapitulated in epithelial and mesenchymal CTC populations in patients with metastatic prostate and breast cancer. Increased kinase activity in EpCAM-high cells rendered them more sensitive to PI3K/mTOR inhibition, and drug-resistant EpCAM-low populations with reduced kinase activity emerged over time. Taken together, single-cell proteomics indicate that microenvironment- and cell state-dependent activation of kinase networks create heterogeneity and differential drug sensitivity among and within tumor populations across different sites, defining a new paradigm of drug responses to kinase inhibitors. SIGNIFICANCE: Single-cell mass cytometry analyses provide insights into the differences in kinase activities across tumor compartments and cell states, which contribute to heterogeneous responses to targeted therapies.


Subject(s)
Prostatic Neoplasms , Proteomics , Animals , Cell Line, Tumor , Epithelial Cell Adhesion Molecule , Humans , Male , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment
5.
Mol Cell ; 81(19): 4041-4058.e15, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34624217

ABSTRACT

Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.


Subject(s)
Breast Neoplasms/metabolism , Cell Proliferation , Immediate-Early Proteins/metabolism , Mitosis , Neoplastic Cells, Circulating/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , 3' Untranslated Regions , Animals , Antineoplastic Agents/pharmacology , Binding Sites , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Chromatin Assembly and Disassembly , Female , Gene Expression Regulation, Neoplastic , Genomic Instability , HEK293 Cells , Humans , Immediate-Early Proteins/genetics , Indoles/pharmacology , MCF-7 Cells , Mice, Inbred NOD , Mice, SCID , Mitosis/drug effects , Neoplastic Cells, Circulating/drug effects , Neoplastic Cells, Circulating/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Phenylacetates/pharmacology , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , R-Loop Structures , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Signal Transduction , Transcription Elongation, Genetic , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Int J Mol Sci ; 22(14)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34298904

ABSTRACT

The dynamic nature of the nuclear envelope (NE) is often underestimated. The NE protects, regulates, and organizes the eukaryote genome and adapts to epigenetic changes and to its environment. The NE morphology is characterized by a wide range of diversity and abnormality such as invagination and blebbing, and it is a diagnostic factor for pathologies such as cancer. Recently, the micronuclei, a small nucleus that contains a full chromosome or a fragment thereof, has gained much attention. The NE of micronuclei is prone to collapse, leading to DNA release into the cytoplasm with consequences ranging from the activation of the cGAS/STING pathway, an innate immune response, to the creation of chromosomal instability. The discovery of those mechanisms has revolutionized the understanding of some inflammation-related diseases and the origin of complex chromosomal rearrangements, as observed during the initiation of tumorigenesis. Herein, we will highlight the complexity of the NE biology and discuss the clinical symptoms observed in NE-related diseases. The interplay between innate immunity, genomic instability, and nuclear envelope leakage could be a major focus in future years to explain a wide range of diseases and could lead to new classes of therapeutics.


Subject(s)
Genomic Instability/genetics , Inflammation/genetics , Nuclear Envelope/genetics , Animals , Cell Nucleus/genetics , Chromosomal Instability/genetics , DNA/genetics , DNA Damage/genetics , Humans , Immunity, Innate/genetics
7.
Theranostics ; 11(14): 6983-7004, 2021.
Article in English | MEDLINE | ID: mdl-34093866

ABSTRACT

Rationale: We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues. Methods: HMG20A expression profile was assessed by quantitative PCR (QT-PCR), Western blotting and/or immunofluorescence in: 1) the hypothalamus of mice exposed or not to either a high-fat diet or a high-fat high-sucrose regimen, 2) human blood leukocytes and adipose tissue obtained from healthy or diabetic individuals and 3) primary mouse hypothalamic astrocytes exposed to either high glucose or palmitate. RNA-seq and cell metabolic parameters were performed on astrocytes treated or not with a siHMG20A. Astrocyte-mediated neuronal survival was evaluated using conditioned media from siHMG20A-treated astrocytes. The impact of ORY1001, an inhibitor of the LSD1-CoREST complex, on HMG20A expression, reactive astrogliosis and glucose metabolism was evaluated in vitro and in vivo in high-fat high-sucrose fed mice. Results: We show that Hmg20a is predominantly expressed in hypothalamic astrocytes, the main nutrient-sensing cell type of the brain. HMG20A expression was upregulated in diet-induced obesity and glucose intolerant mice, correlating with increased transcript levels of Gfap and Il1b indicative of inflammation and reactive astrogliosis. Hmg20a transcript levels were also increased in adipose tissue of obese non-diabetic individuals as compared to obese diabetic patients. HMG20A silencing in astrocytes resulted in repression of inflammatory, cholesterol biogenesis and epithelial-to-mesenchymal transition pathways which are hallmarks of reactive astrogliosis. Accordingly, HMG20A depleted astrocytes exhibited reduced mitochondrial bioenergetics and increased susceptibility to apoptosis. Neuron viability was also hindered in HMG20A-depleted astrocyte-derived conditioned media. ORY1001 treatment rescued expression of reactive astrogliosis-linked genes in HMG20A ablated astrocytes while enhancing cell surface area, GFAP intensity and STAT3 expression in healthy astrocytes, mimicking the effect of HMG20A. Furthermore, ORY1001 treatment protected against obesity-associated glucose intolerance in mice correlating with a regression of hypothalamic HMG20A expression, indicative of reactive astrogliosis attenuation with improved health status. Conclusion: HMG20A coordinates the astrocyte polarization state. Under physiological pressure such as obesity and insulin resistance that induces low grade inflammation, HMG20A expression is increased to induce reactive astrogliosis in an attempt to preserve the neuronal network and re-establish glucose homeostasis. Nonetheless, a chronic metabesity state or functional mutations will result in lower levels of HMG20A, failure to promote reactive astrogliosis and increase susceptibility of neurons to stress-induced apoptosis. Such effects could be reversed by ORY1001 treatment both in vitro and in vivo, paving the way for a new therapeutic approach for Type 2 Diabetes Mellitus.


Subject(s)
Astrocytes/metabolism , Diabetes Mellitus, Type 2/metabolism , Gliosis/metabolism , High Mobility Group Proteins/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Adult , Animals , Cell Survival/drug effects , Co-Repressor Proteins/antagonists & inhibitors , Diet, High-Fat , Glial Fibrillary Acidic Protein/metabolism , Glucose/metabolism , High Mobility Group Proteins/antagonists & inhibitors , High Mobility Group Proteins/genetics , Histone Demethylases/antagonists & inhibitors , Humans , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , RNA, Small Interfering , RNA-Seq
8.
Cancers (Basel) ; 14(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35008251

ABSTRACT

During metastasis, invading tumor cells and circulating tumor cells (CTC) face multiple mechanical challenges during migration through narrow pores and cell squeezing. However, little is known on the importance and consequences of mechanical stress for tumor progression and success in invading a new organ. Recently, several studies have shown that cell constriction can lead to nuclear envelope rupture (NER) during interphase. This loss of proper nuclear compartmentalization has a profound effect on the genome, being a key driver for the genome evolution needed for tumor progression. More than just being a source of genomic alterations, the transient nuclear envelope collapse can also support metastatic growth by several mechanisms involving the innate immune response cGAS/STING pathway. In this review we will describe the importance of the underestimated role of cellular squeezing in the progression of tumorigenesis. We will describe the complexity and difficulty for tumor cells to reach the metastatic site, detail the genomic aberration diversity due to NER, and highlight the importance of the activation of the innate immune pathway on cell survival. Cellular adaptation and nuclear deformation can be the key to the metastasis success in many unsuspected aspects.

9.
Science ; 367(6485): 1468-1473, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32029688

ABSTRACT

Circulating tumor cells (CTCs) are shed into the bloodstream from primary tumors, but only a small subset of these cells generates metastases. We conducted an in vivo genome-wide CRISPR activation screen in CTCs from breast cancer patients to identify genes that promote distant metastasis in mice. Genes coding for ribosomal proteins and regulators of translation were enriched in this screen. Overexpression of RPL15, which encodes a component of the large ribosomal subunit, increased metastatic growth in multiple organs and selectively enhanced translation of other ribosomal proteins and cell cycle regulators. RNA sequencing of freshly isolated CTCs from breast cancer patients revealed a subset with strong ribosome and protein synthesis signatures; these CTCs expressed proliferation and epithelial markers and correlated with poor clinical outcome. Therapies targeting this aggressive subset of CTCs may merit exploration as potential suppressors of metastatic progression.


Subject(s)
Breast Neoplasms/pathology , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology , Ribosomal Proteins/genetics , Animals , Breast Neoplasms/genetics , CRISPR-Cas Systems , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Transplantation , Sequence Analysis, RNA
10.
Nat Commun ; 10(1): 2854, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253781

ABSTRACT

SETD1A, a Set1/COMPASS family member maintaining histone-H3-lysine-4 (H3K4) methylation on transcriptionally active promoters, is overexpressed in breast cancer. Here, we show that SETD1A supports mitotic processes and consequentially, its knockdown induces senescence. SETD1A, through promoter H3K4 methylation, regulates several genes orchestrating mitosis and DNA-damage responses, and its depletion causes chromosome misalignment and segregation defects. Cell cycle arrest in SETD1A knockdown senescent cells is independent of mutations in p53, RB and p16, known senescence mediators; instead, it is sustained through transcriptional suppression of SKP2, which degrades p27 and p21. Rare cells escaping senescence by restoring SKP2 expression display genomic instability. In > 200 cancer cell lines and in primary circulating tumor cells, SETD1A expression correlates with genes promoting mitosis and cell cycle suggesting a broad role in suppressing senescence induced by aberrant mitosis. Thus, SETD1A is essential to maintain mitosis and proliferation and its suppression unleashes the tumor suppressive effects of senescence.


Subject(s)
Cellular Senescence/physiology , Gene Expression Regulation/physiology , Histone-Lysine N-Methyltransferase/metabolism , Mitosis/physiology , Cell Line, Tumor , Histone-Lysine N-Methyltransferase/genetics , Histones , Humans , Methylation , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
11.
Proc Natl Acad Sci U S A ; 116(12): 5223-5232, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30819896

ABSTRACT

Tumor-stromal communication within the microenvironment contributes to initiation of metastasis and may present a therapeutic opportunity. Using serial single-cell RNA sequencing in an orthotopic mouse prostate cancer model, we find up-regulation of prolactin receptor as cancer cells that have disseminated to the lungs expand into micrometastases. Secretion of the ligand prolactin by adjacent lung stromal cells is induced by tumor cell production of the COX-2 synthetic product prostaglandin E2 (PGE2). PGE2 treatment of fibroblasts activates the orphan nuclear receptor NR4A (Nur77), with prolactin as a major transcriptional target for the NR4A-retinoid X receptor (RXR) heterodimer. Ectopic expression of prolactin receptor in mouse cancer cells enhances micrometastasis, while treatment with the COX-2 inhibitor celecoxib abrogates prolactin secretion by fibroblasts and reduces tumor initiation. Across multiple human cancers, COX-2, prolactin, and prolactin receptor show consistent differential expression in tumor and stromal compartments. Such paracrine cross-talk may thus contribute to the documented efficacy of COX-2 inhibitors in cancer suppression.


Subject(s)
Carcinogenesis/metabolism , Prolactin/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction/physiology , Stromal Cells/metabolism , Animals , Carcinogenesis/drug effects , Celecoxib/pharmacology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Dinoprostone/metabolism , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Male , Mice , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Prostatic Neoplasms/drug therapy , Retinoid X Receptors/metabolism , Signal Transduction/drug effects , Stromal Cells/drug effects , Stromal Cells/pathology , Up-Regulation/drug effects , Up-Regulation/physiology
12.
Oncogene ; 38(17): 3151-3169, 2019 04.
Article in English | MEDLINE | ID: mdl-30622340

ABSTRACT

Increased cancer stem cell content during development of resistance to tamoxifen in breast cancer is driven by multiple signals, including Sox2-dependent activation of Wnt signalling. Here, we show that Sox2 increases and estrogen reduces the expression of the transcription factor Sox9. Gain and loss of function assays indicate that Sox9 is implicated in the maintenance of human breast luminal progenitor cells. CRISPR/Cas knockout of Sox9 reduces growth of tamoxifen-resistant breast tumours in vivo. Mechanistically, Sox9 acts downstream of Sox2 to control luminal progenitor cell content and is required for expression of the cancer stem cell marker ALDH1A3 and Wnt signalling activity. Sox9 is elevated in breast cancer patients after endocrine therapy failure. This new regulatory axis highlights the relevance of SOX family transcription factors as potential therapeutic targets in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Breast/metabolism , Drug Resistance, Neoplasm , Neoplastic Stem Cells/metabolism , SOX9 Transcription Factor/metabolism , SOXB1 Transcription Factors/metabolism , Breast/cytology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line , Cell Proliferation , Epithelial Cells/cytology , Estrogens/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , SOX9 Transcription Factor/genetics , Signal Transduction , Tamoxifen/pharmacology , Up-Regulation
13.
Mol Cancer Res ; 16(4): 720-727, 2018 04.
Article in English | MEDLINE | ID: mdl-29453314

ABSTRACT

Molecular drivers underlying bone metastases in human cancer are not well understood, in part due to constraints in bone tissue sampling. Here, RNA sequencing was performed of circulating tumor cells (CTC) isolated from blood samples of women with metastatic estrogen receptor (ER)+ breast cancer, comparing cases with progression in bone versus visceral organs. Among the activated cellular pathways in CTCs from bone-predominant breast cancer is androgen receptor (AR) signaling. AR gene expression is evident, as is its constitutively active splice variant AR-v7. AR expression within CTCs is correlated with the duration of treatment with aromatase inhibitors, suggesting that it contributes to acquired resistance to endocrine therapy. In an established breast cancer xenograft model, a bone-tropic derivative displays increased AR expression, whose genetic or pharmacologic suppression reduces metastases to bone but not to lungs. Together, these observations identify AR signaling in CTCs from women with bone-predominant ER+ breast cancer, and provide a rationale for testing androgen inhibitors in this subset of patients.Implications: This study highlights a role for the AR in breast cancer bone metastasis, and suggests that therapeutic targeting of the AR may benefit patients with metastatic breast cancer. Mol Cancer Res; 16(4); 720-7. ©2018 AACR.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/genetics , Neoplastic Cells, Circulating/chemistry , Receptors, Androgen/genetics , Abdominal Neoplasms/secondary , Alternative Splicing , Animals , Antineoplastic Agents, Hormonal/therapeutic use , Biomarkers, Tumor/genetics , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Female , Humans , Mice , Sequence Analysis, RNA , Single-Cell Analysis
14.
Genes Dev ; 31(3): 318-332, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28242626

ABSTRACT

Poly-(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cells, but their efficacy in BRCA-deficient patients is limited by drug resistance. Here, we used derived cell lines and cells from patients to investigate how to overcome PARPi resistance. We found that the functions of BRCA1 in homologous recombination (HR) and replication fork protection are sequentially bypassed during the acquisition of PARPi resistance. Despite the lack of BRCA1, PARPi-resistant cells regain RAD51 loading to DNA double-stranded breaks (DSBs) and stalled replication forks, enabling two distinct mechanisms of PARPi resistance. Compared with BRCA1-proficient cells, PARPi-resistant BRCA1-deficient cells are increasingly dependent on ATR for survival. ATR inhibitors (ATRis) disrupt BRCA1-independent RAD51 loading to DSBs and stalled forks in PARPi-resistant BRCA1-deficient cells, overcoming both resistance mechanisms. In tumor cells derived from patients, ATRis also overcome the bypass of BRCA1/2 in fork protection. Thus, ATR inhibition is a unique strategy to overcome the PARPi resistance of BRCA-deficient cancers.


Subject(s)
Homologous Recombination/genetics , Ovarian Neoplasms/genetics , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , DNA Repair , DNA, Neoplasm , Drug Resistance, Neoplasm/genetics , Female , Homologous Recombination/drug effects , Humans , Ovarian Neoplasms/drug therapy , Tumor Cells, Cultured
15.
Nat Commun ; 8: 14344, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181495

ABSTRACT

Metastasis-competent circulating tumour cells (CTCs) experience oxidative stress in the bloodstream, but their survival mechanisms are not well defined. Here, comparing single-cell RNA-Seq profiles of CTCs from breast, prostate and lung cancers, we observe consistent induction of ß-globin (HBB), but not its partner α-globin (HBA). The tumour-specific origin of HBB is confirmed by sequence polymorphisms within human xenograft-derived CTCs in mouse models. Increased intracellular reactive oxygen species (ROS) in cultured breast CTCs triggers HBB induction, mediated through the transcriptional regulator KLF4. Depletion of HBB in CTC-derived cultures has minimal effects on primary tumour growth, but it greatly increases apoptosis following ROS exposure, and dramatically reduces CTC-derived lung metastases. These effects are reversed by the anti-oxidant N-Acetyl Cysteine. Conversely, overexpression of HBB is sufficient to suppress intracellular ROS within CTCs. Altogether, these observations suggest that ß-globin is selectively deregulated in cancer cells, mediating a cytoprotective effect during blood-borne metastasis.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/blood , Neoplasms/genetics , beta-Globins/genetics , Animals , Antioxidants/metabolism , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Cytoprotection/genetics , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Male , Mice , Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Reactive Oxygen Species/metabolism , Stress, Physiological , Up-Regulation/genetics , beta-Globins/metabolism
16.
Stem Cells ; 35(2): 507-521, 2017 02.
Article in English | MEDLINE | ID: mdl-27615355

ABSTRACT

Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL-PLAP+ cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL-PLAP+ hematopoietic or endothelial cell subset responsible for the long-term reconstituting endothelial cell (LTR-EC) activity and its confinement to FL developmental stages remained unknown. Using a busulfan-treated newborn transplantation model, we show that LTR-EC activity is restricted to the SCL-PLAP+ VE-cadherin+ CD45- cell population, devoid of hematopoietic reconstitution activity and largely composed by Lyve1+ endothelial-committed cells. SCL-PLAP+ Ve-cadherin+ CD45- cells contributed to the liver sinusoidal endothelium and also to the heart, kidney and lung microvasculature. LTR-EC activity was detected at different stages of FL development, yet marginal activity was identified in the adult liver, revealing unknown functional differences between fetal and adult liver endothelial/endothelial progenitors. Importantly, the observations that expanding donor-derived vascular grafts colocalize with proliferating hepatocyte-like cells and participate in the systemic circulation, support their functional integration into young livers. These findings offer new insights into the engraftment, phonotypical, and developmental characterization of a novel endothelial/endothelial progenitor cell subtype with multiorgan LTR-EC activity, potentially instrumental for the treatment/genetic correction of vascular diseases. Stem Cells 2017;35:507-521.


Subject(s)
Endothelial Cells/cytology , Fetus/cytology , Fetus/embryology , Liver/embryology , Animals , Antigens, CD/metabolism , Blood Vessels/transplantation , Cadherins/metabolism , Cell Aggregation , Cell Line , Endothelial Cells/metabolism , Extracellular Matrix Proteins/metabolism , Hematopoiesis , Leukocyte Common Antigens/metabolism , Mice , Organ Specificity , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism
17.
Cell Rep ; 17(10): 2632-2647, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27926867

ABSTRACT

TGF-ß secreted by tumor stroma induces epithelial-to-mesenchymal transition (EMT) in cancer cells, a reversible phenotype linked to cancer progression and drug resistance. However, exposure to stromal signals may also lead to heritable changes in cancer cells, which are poorly understood. We show that epithelial cells failing to undergo proliferation arrest during TGF-ß-induced EMT sustain mitotic abnormalities due to failed cytokinesis, resulting in aneuploidy. This genomic instability is associated with the suppression of multiple nuclear envelope proteins implicated in mitotic regulation and is phenocopied by modulating the expression of LaminB1. While TGF-ß-induced mitotic defects in proliferating cells are reversible upon its withdrawal, the acquired genomic abnormalities persist, leading to increased tumorigenic phenotypes. In metastatic breast cancer patients, increased mesenchymal marker expression within single circulating tumor cells is correlated with genomic instability. These observations identify a mechanism whereby microenvironment-derived signals trigger heritable genetic changes within cancer cells, contributing to tumor evolution.


Subject(s)
Breast Neoplasms/genetics , Genomic Instability/genetics , Lamin Type B/genetics , Transforming Growth Factor beta1/genetics , Breast Neoplasms/pathology , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Humans
18.
Nat Commun ; 6: 8257, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26394836

ABSTRACT

Expression of the p53-inducible antiproliferative gene BTG2 is suppressed in many cancers in the absence of inactivating gene mutations, suggesting alternative mechanisms of silencing. Using a shRNA screen targeting 43 histone lysine methyltransferases (KMTs), we show that SETD1A suppresses BTG2 expression through its induction of several BTG2-targeting miRNAs. This indirect but highly specific mechanism, by which a chromatin regulator that mediates transcriptional activating marks can lead to the downregulation of a critical effector gene, is shared with multiple genes in the p53 pathway. Through such miRNA-dependent effects, SETD1A regulates cell cycle progression in vitro and modulates tumorigenesis in mouse xenograft models. Together, these observations help explain the remarkably specific genetic consequences associated with alterations in generic chromatin modulators in cancer.


Subject(s)
Cell Cycle , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/metabolism , Immediate-Early Proteins/metabolism , MicroRNAs/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Carcinogenesis , Cell Line, Tumor , Female , Humans , Male , Mice, Nude , Neoplasms, Experimental , Promoter Regions, Genetic , Tumor Suppressor Protein p53/metabolism
19.
Science ; 345(6193): 216-20, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25013076

ABSTRACT

Circulating tumor cells (CTCs) are present at low concentrations in the peripheral blood of patients with solid tumors. It has been proposed that the isolation, ex vivo culture, and characterization of CTCs may provide an opportunity to noninvasively monitor the changing patterns of drug susceptibility in individual patients as their tumors acquire new mutations. In a proof-of-concept study, we established CTC cultures from six patients with estrogen receptor-positive breast cancer. Three of five CTC lines tested were tumorigenic in mice. Genome sequencing of the CTC lines revealed preexisting mutations in the PIK3CA gene and newly acquired mutations in the estrogen receptor gene (ESR1), PIK3CA gene, and fibroblast growth factor receptor gene (FGFR2), among others. Drug sensitivity testing of CTC lines with multiple mutations revealed potential new therapeutic targets. With optimization of CTC culture conditions, this strategy may help identify the best therapies for individual cancer patients over the course of their disease.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Molecular Targeted Therapy , Neoplastic Cells, Circulating/drug effects , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/genetics , Cell Culture Techniques , Cell Separation , Class I Phosphatidylinositol 3-Kinases , Culture , Drug Screening Assays, Antitumor/methods , Estrogen Receptor alpha/genetics , Female , Gene Frequency , Humans , Mice , Microfluidics/methods , Mutation , Neoplastic Cells, Circulating/metabolism , Phosphatidylinositol 3-Kinases/genetics , Sequence Analysis, DNA , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
EMBO Mol Med ; 6(1): 66-79, 2014 01.
Article in English | MEDLINE | ID: mdl-24178749

ABSTRACT

Development of resistance to therapy continues to be a serious clinical problem in breast cancer management. Cancer stem/progenitor cells have been shown to play roles in resistance to chemo­ and radiotherapy. Here, we examined their role in the development of resistance to the oestrogen receptor antagonist tamoxifen. Tamoxifen­resistant cells were enriched for stem/progenitors and expressed high levels of the stem cell marker Sox2. Silencing of the SOX2 gene reduced the size of the stem/progenitor cell population and restored sensitivity to tamoxifen. Conversely, ectopic expression of Sox2 reduced tamoxifen sensitivity in vitro and in vivo. Gene expression profiling revealed activation of the Wnt signalling pathway in Sox2­expressing cells, and inhibition of Wnt signalling sensitized resistant cells to tamoxifen. Examination of patient tumours indicated that Sox2 levels are higher in patients after endocrine therapy failure, and also in the primary tumours of these patients, compared to those of responders. Together, these results suggest that development of tamoxifen resistance is driven by Sox2­dependent activation of Wnt signalling in cancer stem/progenitor cells.


Subject(s)
Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , SOXB1 Transcription Factors/metabolism , Tamoxifen/therapeutic use , Animals , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Endoplasmic Reticulum/metabolism , Female , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , RNA Interference , Recurrence , SOXB1 Transcription Factors/antagonists & inhibitors , SOXB1 Transcription Factors/genetics , Survival Analysis , Tamoxifen/pharmacology , Transplantation, Heterologous , Wnt Proteins/metabolism , Wnt Signaling Pathway/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...