Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Oncoimmunology ; 13(1): 2377830, 2024.
Article in English | MEDLINE | ID: mdl-39005546

ABSTRACT

Attenuated measles virus (MV) exerts its oncolytic activity in malignant pleural mesothelioma (MPM) cells that lack type-I interferon (IFN-I) production or responsiveness. However, other cells in the tumor microenvironment (TME), such as myeloid cells, possess functional antiviral pathways. In this study, we aimed to characterize the interplay between MV and the myeloid cells in human MPM. We cocultured MPM cell lines with monocytes or macrophages and infected them with MV. We analyzed the transcriptome of each cell type and studied their secretion and phenotypes by high-dimensional flow cytometry. We also measured transgene expression using an MV encoding GFP (MV-GFP). We show that MPM cells drive the differentiation of monocytes into M2-like macrophages. These macrophages inhibit GFP expression in tumor cells harboring a defect in IFN-I production and a functional signaling downstream of the IFN-I receptor, while having minimal effects on GFP expression in tumor cells with defect of responsiveness to IFN-I. Interestingly, inhibition of the IFN-I signaling by ruxolitinib restores GFP expression in tumor cells. Upon MV infection, cocultured macrophages express antiviral pro-inflammatory genes and induce the expression of IFN-stimulated genes in tumor cells. MV also increases the expression of HLA and costimulatory molecules on macrophages and their phagocytic activity. Finally, MV induces the secretion of inflammatory cytokines, especially IFN-I, and PD-L1 expression in tumor cells and macrophages. These results show that macrophages reduce viral proteins expression in some MPM cell lines through their IFN-I production and generate a pro-inflammatory interplay that may stimulate the patient's anti-tumor immune response.


Subject(s)
Coculture Techniques , Macrophages , Measles virus , Oncolytic Virotherapy , Oncolytic Viruses , Tumor Microenvironment , Humans , Measles virus/genetics , Measles virus/physiology , Tumor Microenvironment/immunology , Macrophages/metabolism , Macrophages/immunology , Macrophages/virology , Oncolytic Viruses/genetics , Oncolytic Virotherapy/methods , Cell Line, Tumor , Mesothelioma, Malignant/pathology , Mesothelioma, Malignant/therapy , Interferon Type I/metabolism , Monocytes/immunology , Monocytes/metabolism , Monocytes/virology , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/virology , Cell Differentiation
2.
Methods Mol Biol ; 2808: 89-103, 2024.
Article in English | MEDLINE | ID: mdl-38743364

ABSTRACT

The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system. Thus, some of the detected protein-protein interactions may be artificial. Here we describe a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect protein partners during the infection (AP-MS in viral context). This way, virus-host protein-protein interacting co-complexes can be purified directly from infected cells for further characterization.


Subject(s)
Host-Pathogen Interactions , Measles virus , Reverse Genetics , Viral Proteins , Measles virus/genetics , Humans , Host-Pathogen Interactions/genetics , Reverse Genetics/methods , Viral Proteins/metabolism , Viral Proteins/genetics , Two-Hybrid System Techniques , Virus Replication , Mass Spectrometry , Protein Interaction Mapping/methods , Measles/virology , Measles/metabolism , Animals , Protein Binding
3.
Cancer Immunol Immunother ; 72(10): 3309-3322, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37466668

ABSTRACT

Antitumor virotherapy stimulates the antitumor immune response during tumor cell lysis induced by oncolytic viruses (OVs). OV can be modified to express additional transgenes that enhance their therapeutic potential. In this study, we armed the spontaneously oncolytic Schwarz strain of measles viruses (MVs) with the gene encoding the cancer/testis antigen NY-ESO-1 to obtain MVny. We compared MV and MVny oncolytic activity and ability to induce NY-ESO-1 expression in six human melanoma cell lines. After MVny infection, we measured the capacity of melanoma cells to present NY-ESO-1 peptides to CD4 + and CD8 + T cell clones specific for this antigen. We assessed the ability of MVny to induce NY-ESO-1 expression and presentation in monocyte-derived dendritic cells (DCs). Our results show that MVny and MV oncolytic activity are similar with a faster cell lysis induced by MVny. We also observed that melanoma cell lines and DC expressed the NY-ESO-1 protein after MVny infection. In addition, MVny-infected melanoma cells and DCs were able to stimulate NY-ESO-1-specific CD4 + and CD8 + T cells. Finally, MVny was able to induce DC maturation. Altogether, these results show that MVny could be an interesting candidate to stimulate NY-ESO-1-specific T cells in melanoma patients with NY-ESO-1-expressing tumor cells.


Subject(s)
Measles , Melanoma , Oncolytic Viruses , Male , Humans , Oncolytic Viruses/genetics , Membrane Proteins , Measles virus/genetics , Melanoma/metabolism , CD8-Positive T-Lymphocytes , Antigens, Neoplasm , Antibodies/metabolism , Dendritic Cells , Measles/metabolism
4.
PLoS Pathog ; 19(2): e1011170, 2023 02.
Article in English | MEDLINE | ID: mdl-36802406

ABSTRACT

Viruses have evolved countless mechanisms to subvert and impair the host innate immune response. Measles virus (MeV), an enveloped, non-segmented, negative-strand RNA virus, alters the interferon response through different mechanisms, yet no viral protein has been described as directly targeting mitochondria. Among the crucial mitochondrial enzymes, 5'-aminolevulinate synthase (ALAS) is an enzyme that catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. In this work, we demonstrate that MeV impairs the mitochondrial network through the V protein, which antagonizes the mitochondrial enzyme ALAS1 and sequesters it to the cytosol. This re-localization of ALAS1 leads to a decrease in mitochondrial volume and impairment of its metabolic potential, a phenomenon not observed in MeV deficient for the V gene. This perturbation of the mitochondrial dynamics demonstrated both in culture and in infected IFNAR-/- hCD46 transgenic mice, causes the release of mitochondrial double-stranded DNA (mtDNA) in the cytosol. By performing subcellular fractionation post infection, we demonstrate that the most significant source of DNA in the cytosol is of mitochondrial origin. Released mtDNA is then recognized and transcribed by the DNA-dependent RNA polymerase III. The resulting double-stranded RNA intermediates will be captured by RIG-I, ultimately initiating type I interferon production. Deep sequencing analysis of cytosolic mtDNA editing divulged an APOBEC3A signature, primarily analyzed in the 5'TpCpG context. Finally, in a negative feedback loop, APOBEC3A an interferon inducible enzyme will orchestrate the catabolism of mitochondrial DNA, decrease cellular inflammation, and dampen the innate immune response.


Subject(s)
Interferons , Mitochondria , Mice , Animals , Mitochondria/metabolism , Measles virus , 5-Aminolevulinate Synthetase/genetics , 5-Aminolevulinate Synthetase/metabolism , DNA, Mitochondrial
5.
Nat Commun ; 12(1): 6277, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725327

ABSTRACT

Several COVID-19 vaccines have now been deployed to tackle the SARS-CoV-2 pandemic, most of them based on messenger RNA or adenovirus vectors.The duration of protection afforded by these vaccines is unknown, as well as their capacity to protect from emerging new variants. To provide sufficient coverage for the world population, additional strategies need to be tested. The live pediatric measles vaccine (MV) is an attractive approach, given its extensive safety and efficacy history, along with its established large-scale manufacturing capacity. We develop an MV-based SARS-CoV-2 vaccine expressing the prefusion-stabilized, membrane-anchored full-length S antigen, which proves to be efficient at eliciting strong Th1-dominant T-cell responses and high neutralizing antibody titers. In both mouse and golden Syrian hamster models, these responses protect the animals from intranasal infectious challenge. Additionally, the elicited antibodies efficiently neutralize in vitro the three currently circulating variants of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Genetic Vectors , Immunity , Adenoviridae , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Cricetinae , Cytokines , Female , Immunization , Immunization, Secondary , Male , Measles Vaccine/immunology , Mesocricetus , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
6.
NPJ Vaccines ; 6(1): 123, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34686669

ABSTRACT

Replicative vectors derived from live-attenuated measles virus (MV) carrying additional non-measles vaccine antigens have long demonstrated safety and immunogenicity in humans despite pre-existing immunity to measles. Here, we report the vaccination of cynomolgus macaques with MV replicative vectors expressing simian-human immunodeficiency virus Gag, Env, and Nef antigens (MV-SHIV Wt) either wild type or mutated in the immunosuppressive (IS) domains of Nef and Env antigens (MV-SHIV Mt). We found that the inactivation of Nef and Env IS domains by targeted mutations led to the induction of significantly enhanced post-prime cellular immune responses. After repeated challenges with low doses of SHIV-SF162p3, vaccinees were protected against high viremia, resulting in a 2-Log reduction in peak viremia, accelerated viral clearance, and a decrease -even complete protection for nearly half of the monkeys- in reservoir cell infection. This study demonstrates the potential of a replicative viral vector derived from the safe and widely used measles vaccine in the development of a future human vaccine against HIV-1.

7.
Mol Cell Proteomics ; 20: 100049, 2021.
Article in English | MEDLINE | ID: mdl-33515806

ABSTRACT

Viruses manipulate the central machineries of host cells to their advantage. They prevent host cell antiviral responses to create a favorable environment for their survival and propagation. Measles virus (MV) encodes two nonstructural proteins MV-V and MV-C known to counteract the host interferon response and to regulate cell death pathways. Several molecular mechanisms underlining MV-V regulation of innate immunity and cell death pathways have been proposed, whereas MV-C host-interacting proteins are less studied. We suggest that some cellular factors that are controlled by MV-C protein during viral replication could be components of innate immunity and the cell death pathways. To determine which host factors are targeted by MV-C, we captured both direct and indirect host-interacting proteins of MV-C protein. For this, we used a strategy based on recombinant viruses expressing tagged viral proteins followed by affinity purification and a bottom-up mass spectrometry analysis. From the list of host proteins specifically interacting with MV-C protein in different cell lines, we selected the host targets that belong to immunity and cell death pathways for further validation. Direct protein interaction partners of MV-C were determined by applying protein complementation assay and the bioluminescence resonance energy transfer approach. As a result, we found that MV-C protein specifically interacts with p65-iASPP protein complex that controls both cell death and innate immunity pathways and evaluated the significance of these host factors on virus replication.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Repressor Proteins/metabolism , Transcription Factor RelA/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Cell Death , Cell Line , Chlorocebus aethiops , Host-Pathogen Interactions , Humans , Intracellular Signaling Peptides and Proteins/genetics , Measles virus/genetics , Measles virus/physiology , Protein Interaction Maps , Proteomics , Repressor Proteins/genetics , Transcription Factor RelA/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication
8.
Sci Signal ; 12(601)2019 10 01.
Article in English | MEDLINE | ID: mdl-31575732

ABSTRACT

The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) RIG-I, MDA5, and LGP2 stimulate inflammatory and antiviral responses by sensing nonself RNA molecules produced during viral replication. Here, we investigated how LGP2 regulates the RIG-I- and MDA5-dependent induction of type I interferon (IFN) signaling and showed that LGP2 interacted with different components of the RNA-silencing machinery. We identified a direct protein-protein interaction between LGP2 and the IFN-inducible, double-stranded RNA binding protein PACT. The LGP2-PACT interaction was mediated by the regulatory C-terminal domain of LGP2 and was necessary for inhibiting RIG-I-dependent responses and for amplifying MDA5-dependent responses. We described a point mutation within LGP2 that disrupted the LGP2-PACT interaction and led to the loss of LGP2-mediated regulation of RIG-I and MDA5 signaling. These results suggest a model in which the LGP2-PACT interaction regulates the inflammatory responses mediated by RIG-I and MDA5 and enables the cellular RNA-silencing machinery to coordinate with the innate immune response.


Subject(s)
Antiviral Agents/metabolism , DEAD Box Protein 58/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , RNA Helicases/metabolism , RNA-Binding Proteins/metabolism , Animals , Chlorocebus aethiops , DEAD Box Protein 58/genetics , Enterovirus B, Human/genetics , Enterovirus B, Human/physiology , HEK293 Cells , HeLa Cells , Humans , Interferon Type I/genetics , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Mengovirus/genetics , Mengovirus/physiology , Protein Binding , RNA Helicases/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , Receptors, Immunologic , Signal Transduction/genetics , Vero Cells
9.
NPJ Vaccines ; 4: 12, 2019.
Article in English | MEDLINE | ID: mdl-30820355

ABSTRACT

Following the RTS,S malaria vaccine, which showed only partial protection with short-term memory, there is strong support to develop second-generation malaria vaccines that yield higher efficacy with longer duration. The use of replicating viral vectors to deliver subunit vaccines is of great interest due to their capacity to induce efficient cellular immune responses and long-term memory. The measles vaccine virus offers an efficient and safe live viral vector that could easily be implemented in the field. Here, we produced recombinant measles viruses (rMV) expressing malaria "gold standard" circumsporozoïte antigen (CS) of Plasmodium berghei (Pb) and Plasmodium falciparum (Pf) to test proof of concept of this delivery strategy. Immunization with rMV expressing PbCS or PfCS induced high antibody responses in mice that did not decrease for at least 22 weeks post-prime, as well as rapid development of cellular immune responses. The observed long-term memory response is key for development of second-generation malaria vaccines. Sterile protection was achieved in 33% of immunized mice, as usually observed with the CS antigen, and all other immunized animals were clinically protected from severe and lethal Pb ANKA-induced cerebral malaria. Further rMV-vectored malaria vaccine candidates expressing additional pre-erythrocytic and blood-stage antigens in combination with rMV expressing PfCS may provide a path to development of next generation malaria vaccines with higher efficacy.

10.
Cancer Immunol Immunother ; 68(4): 533-544, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30656384

ABSTRACT

Cancer immunotherapy is seeing an increasing focus on vaccination with tumor-associated antigens (TAAs). Human telomerase (hTERT) is a TAA expressed by most tumors to overcome telomere shortening. Tolerance to hTERT can be easily broken both naturally and experimentally and hTERT DNA vaccine candidates have been introduced in clinical trials. DNA prime/boost strategies have been widely developed to immunize efficiently against infectious diseases. We explored the use of a recombinant measles virus (MV) hTERT vector to boost DNA priming as recombinant live attenuated measles virus has an impressive safety and efficacy record. Here, we show that a MV-TERT vector can rapidly and strongly boost DNA hTERT priming in MV susceptible IFNAR/CD46 mouse models. The cellular immune responses were Th1 polarized. No humoral responses were elicited. The 4 kb hTERT transgene did not impact MV replication or induction of cell-mediated responses. These findings validate the MV-TERT vector to boost cell-mediated responses following DNA priming in humans.


Subject(s)
Cancer Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , Genetic Vectors , Immunity, Cellular , Measles virus , T-Lymphocytes/immunology , Telomerase/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/genetics , Cell Line , Chlorocebus aethiops , Cytokines/metabolism , Cytotoxicity, Immunologic , Genetic Vectors/genetics , Humans , Immunization , Immunization, Secondary , Measles virus/genetics , Mice , Mice, Transgenic , Telomerase/genetics , Vaccines, DNA , Vero Cells
11.
RNA ; 24(10): 1285-1296, 2018 10.
Article in English | MEDLINE | ID: mdl-30012569

ABSTRACT

Defective interfering (DI) genomes, or defective viral genomes (DVGs), are truncated viral genomes generated during replication of most viruses, including live viral vaccines. Among these, "panhandle" or copy-back (cb) and "hairpin" or snap-back (sb) DI genomes are generated during RNA virus replication. 5' cb/sb DI genomes are highly relevant for viral pathogenesis since they harbor immunostimulatory properties that increase virus recognition by the innate immune system of the host. We have developed DI-tector, a user-friendly and freely available program that identifies and characterizes cb/sb genomes from next-generation sequencing (NGS) data. DI-tector confirmed the presence of 5' cb genomes in cells infected with measles virus (MV). DI-tector also identified a novel 5' cb genome, as well as a variety of 3' cb/sb genomes whose existence had not previously been detected by conventional approaches in MV-infected cells. The presence of these novel cb/sb genomes was confirmed by RT-qPCR and RT-PCR, validating the ability of DI-tector to reveal the landscape of DI genome population in infected cell samples. Performance assessment using different experimental and simulated data sets revealed the robust specificity and sensitivity of DI-tector. We propose DI-tector as a universal tool for the unbiased detection of DI viral genomes, including 5' cb/sb DI genomes, in NGS data.


Subject(s)
Defective Viruses/genetics , Genome, Viral , Genomics , Software , Cell Line , Computational Biology/methods , Genes, rRNA , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , RNA, Viral , Reproducibility of Results , Sensitivity and Specificity , Virus Replication
12.
J Virol ; 91(20)2017 10 15.
Article in English | MEDLINE | ID: mdl-28768856

ABSTRACT

Attenuated measles virus (MV) is one of the most effective and safe vaccines available, making it an attractive candidate vector for preventing other infectious diseases. Yet the great capacity of this vaccine still needs to be understood at the molecular level. MV vaccine strains have different type I interferon (IFN)-inducing abilities that partially depend on the presence of 5' copy-back defective interfering genomes (DI-RNAs). DI-RNAs are pathogen-associated molecular patterns recognized by RIG-I-like receptors (RLRs) (RIG-I, MDA5, and LGP2) that activate innate immune signaling and shape the adaptive immune response. In this study, we characterized the DI-RNAs produced by various modified recombinant MVs (rMVs), including vaccine candidates, as well as wild-type MV. All tested rMVs produced 5' copy-back DI-RNAs that were different in length and nucleotide sequence but still respected the so-called "rule of six." We correlated the presence of DI-RNAs with a larger stimulation of the IFN-ß pathway and compared their immunostimulatory potentials. Importantly, we revealed that encapsidation of DI-RNA molecules within the MV nucleocapsid abolished their immunoactive properties. Furthermore, we identified specific interactions of DI-RNAs with both RIG-I and LGP2 but not MDA5. Our results suggest that DI-RNAs produced by rMV vaccine candidates may indeed strengthen their efficiency by triggering RLR signaling.IMPORTANCE Having been administered to hundreds of millions of children, the live attenuated measles virus (MV) vaccine is the safest and most widely used human vaccine, providing high protection with long-term memory. Additionally, recombinant MVs carrying heterologous antigens are promising vectors for new vaccines. The great capacity of this vaccine still needs to be elucidated at the molecular level. Here we document that recombinant MVs produce defective interfering genomes that have high immunostimulatory properties via their binding to RIG-I and LGP2 proteins, both of which are cytosolic nonself RNA sensors of innate immunity. Defective interfering genome production during viral replication should be considered of great importance due to the immunostimulatory properties of these genomes as intrinsic adjuvants produced by the vector that increase recognition by the innate immune system.


Subject(s)
Genome, Viral , Interferon-Induced Helicase, IFIH1/metabolism , Measles virus/genetics , RNA Helicases/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Receptors, Retinoic Acid/metabolism , Cell Line , Humans , Immunity, Innate , Interferon-beta/metabolism , Measles/virology , Measles Vaccine/genetics , Measles Vaccine/immunology , Measles virus/pathogenicity , Nucleocapsid/metabolism , RNA, Viral/immunology , Signal Transduction
13.
Malar J ; 16(1): 259, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28662722

ABSTRACT

BACKGROUND: Yeast cells represent an established bioreactor to produce recombinant proteins for subunit vaccine development. In addition, delivery of vaccine antigens directly within heat-inactivated yeast cells is attractive due to the adjuvancy provided by the yeast cell. In this study, Pichia pastoris yeast lysates carrying the nucleoprotein (N) from the measles vaccine virus were evaluated as a novel subunit vaccine platform to deliver the circumsporozoite surface antigen (CS) of Plasmodium. When expressed in Pichia pastoris yeast, the N protein auto-assembles into highly multimeric ribonucleoparticles (RNPs). The CS antigen from Plasmodium berghei (PbCS) was expressed in Pichia pastoris yeast in fusion with N, generating recombinant PbCS-carrying RNPs in the cytoplasm of yeast cells. RESULTS: When evaluated in mice after 3-5 weekly subcutaneous injections, yeast lysates containing N-PbCS RNPs elicited strong anti-PbCS humoral responses, which were PbCS-dose dependent and reached a plateau by the pre-challenge time point. Protective efficacy of yeast lysates was dose-dependent, although anti-PbCS antibody titers were not predictive of protection. Multimerization of PbCS on RNPs was essential for providing benefit against infection, as immunization with monomeric PbCS delivered in yeast lysates was not protective. Three weekly injections with N-PbCS yeast lysates in combination with alum adjuvant produced sterile protection in two out of six mice, and significantly reduced parasitaemia in the other individuals from the same group. This parasitaemia decrease was of the same extent as in mice immunized with non-adjuvanted N-PbCS yeast lysates, providing evidence that the yeast lysate formulation did not require accessory adjuvants for eliciting efficient parasitaemia reduction. CONCLUSIONS: This study demonstrates that yeast lysates are an attractive auto-adjuvant and efficient platform for delivering multimeric PbCS on measles N-based RNPs. By combining yeast lysates that carry RNPs with a large panel of Plasmodium antigens, this technology could be applied to developing a multivalent vaccine against malaria.


Subject(s)
Malaria Vaccines/immunology , Malaria/prevention & control , Nucleoproteins , Pichia/physiology , Plasmodium berghei/immunology , Protozoan Proteins/immunology , Viral Proteins , Animals , Female , Mice , Nucleocapsid Proteins , Nucleoproteins/immunology , Vaccines, Subunit/immunology , Viral Proteins/immunology
14.
Oncoimmunology ; 6(1): e1261240, 2017.
Article in English | MEDLINE | ID: mdl-28197384

ABSTRACT

Attenuated measles virus (MV) is currently being evaluated in clinical trials as an oncolytic therapeutic agent. Originally used for its lytic activity against tumor cells, it is now admitted that the effectiveness of MV also lies in its ability to initiate antitumor immune responses through the activation of dendritic cells (DCs). In this study, we investigated the capacity of oncolytic MV to convert human blood myeloid CD1c+ DCs and plasmacytoid DCs (pDCs) into cytotoxic effectors. We found that MV induces the expression of the cytotoxic protein TNF-related apoptosis-inducing ligand (TRAIL) on the surface of DCs. We demonstrate that the secretion of interferon-α (IFN-α) by DCs in response to MV is responsible for this TRAIL expression. Several types of PRRs (pattern recognition receptors) have been implicated in MV genome recognition, including RLRs (RIG-I-like receptors) and TLRs (Toll-like receptors). We showed that CD1c+ DCs secrete modest amounts of IFN-α and express TRAIL in an RLR-dependent manner upon exposure to MV. In pDCs, MV is recognized by RLRs and also by TLR7, leading to the secretion of high amounts of IFN-α and TRAIL expression. Finally, we showed that MV-stimulated DCs induce TRAIL-mediated cell death of Jurkat cells, confirming their acquisition of cytotoxic functions. Our results demonstrate that MV can activate cytotoxic myeloid CD1c+ DCs and pDCs, which may participate to the antitumor immune response.

15.
Curr Gene Ther ; 16(6): 419-428, 2017.
Article in English | MEDLINE | ID: mdl-28042780

ABSTRACT

BACKGROUND: Oncolytic viruses such as live-attenuated, vaccine strains of measles virus (MV) have recently emerged as promising cancer treatments, having shown significant antitumor activity against a large variety of human tumors. OBJECTIVE: Our study aims at determining which parameters define the sensitivity of human melanoma cells to oncolytic MV infection. METHODS: We analyzed both in vitro and in vivo the oncolytic activity of MV against a panel of human melanoma cell established in our laboratory. We tested whether either type I interferons or the interferon pathway inhibitor Ruxolitinib could modulate the sensitivity of these cells to oncolytic MV infection. RESULTS: Human melanoma cells exhibit varying levels of sensitivity to MV infection in culture and as tumor xenografts. As these differences are not explained by their expression level of the CD46 receptor, we hypothesized that antiviral immune responses may be suppressed in certain cell resulting in their inability to control infection efficiently. By analyzing the type I IFN response, we found that resistant cells had a fully functional pathway that was activated upon MV infection. On the contrary, sensitive cell showed defects in this pathway. When pre-treated with IFN-α and IFN-ß, all but one of the sensitive cell became resistant to MV. Cells resistant to MV were rendered sensitive to MV with Ruxolitinib. CONCLUSION: Type I interferon response is the main determinant for the sensitivity or resistance of melanoma to oncolytic MV infection. This will have to be taken into account for future clinical trials on oncolytic MV.


Subject(s)
Interferon Type I/therapeutic use , Measles virus/genetics , Melanoma/therapy , Oncolytic Virotherapy , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Humans , Interferon Type I/genetics , Melanoma/genetics , Melanoma/virology , Membrane Cofactor Protein/genetics , Mice , Oncolytic Viruses/genetics , Xenograft Model Antitumor Assays
16.
Elife ; 5: e11275, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27011352

ABSTRACT

The RIG-I-like receptors (RLRs) play a major role in sensing RNA virus infection to initiate and modulate antiviral immunity. They interact with particular viral RNAs, most of them being still unknown. To decipher the viral RNA signature on RLRs during viral infection, we tagged RLRs (RIG-I, MDA5, LGP2) and applied tagged protein affinity purification followed by next-generation sequencing (NGS) of associated RNA molecules. Two viruses with negative- and positive-sense RNA genome were used: measles (MV) and chikungunya (CHIKV). NGS analysis revealed that distinct regions of MV genome were specifically recognized by distinct RLRs: RIG-I recognized defective interfering genomes, whereas MDA5 and LGP2 specifically bound MV nucleoprotein-coding region. During CHIKV infection, RIG-I associated specifically to the 3' untranslated region of viral genome. This study provides the first comparative view of the viral RNA ligands for RIG-I, MDA5 and LGP2 in the presence of infection.


Subject(s)
Chikungunya virus/immunology , DEAD Box Protein 58/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Measles virus/immunology , RNA Helicases/metabolism , RNA, Viral/metabolism , Receptors, Immunologic/metabolism , Cell Line , High-Throughput Nucleotide Sequencing , Humans , Interferon-Induced Helicase, IFIH1/isolation & purification , RNA Helicases/isolation & purification , RNA, Viral/genetics , Receptors, Immunologic/isolation & purification
17.
Oncotarget ; 6(42): 44892-904, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26539644

ABSTRACT

Attenuated measles virus (MV) is currently being evaluated as an oncolytic virus in clinical trials and could represent a new therapeutic approach for malignant pleural mesothelioma (MPM). Herein, we screened the sensitivity to MV infection and replication of twenty-two human MPM cell lines and some healthy primary cells. We show that MV replicates in fifteen of the twenty-two MPM cell lines. Despite overexpression of CD46 by a majority of MPM cell lines compared to healthy cells, we found that the sensitivity to MV replication did not correlate with this overexpression. We then evaluated the antiviral type I interferon (IFN) responses of MPM cell lines and healthy cells. We found that healthy cells and the seven insensitive MPM cell lines developed a type I IFN response in presence of the virus, thereby inhibiting replication. In contrast, eleven of the fifteen sensitive MPM cell lines were unable to develop a complete type I IFN response in presence of MV. Finally, we show that addition of type I IFN onto MV sensitive tumor cell lines inhibits replication. These results demonstrate that defects in type I IFN response are frequent in MPM and that MV takes advantage of these defects to exert oncolytic activity.


Subject(s)
Interferon Type I/metabolism , Measles virus/growth & development , Mesothelioma/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/growth & development , Pleural Neoplasms/therapy , Virus Replication , Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Host-Pathogen Interactions , Humans , Interferon Type I/immunology , Measles virus/immunology , Measles virus/metabolism , Membrane Cofactor Protein/metabolism , Mesothelioma/immunology , Mesothelioma/metabolism , Mesothelioma/virology , Oncolytic Viruses/immunology , Oncolytic Viruses/metabolism , Pleural Neoplasms/immunology , Pleural Neoplasms/metabolism , Pleural Neoplasms/virology , Receptors, Cell Surface/metabolism , Signal Transduction , Signaling Lymphocytic Activation Molecule Family Member 1 , Time Factors
18.
Virology ; 452-453: 32-41, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24606680

ABSTRACT

The recent identification of a novel human coronavirus responsible of a SARS-like illness in the Middle-East a decade after the SARS pandemic, demonstrates that reemergence of a SARS-like coronavirus from an animal reservoir remains a credible threat. Because SARS is contracted by aerosolized contamination of the respiratory tract, a vaccine inducing mucosal long-term protection would be an asset to control new epidemics. To this aim, we generated live attenuated recombinant measles vaccine (MV) candidates expressing either the membrane-anchored SARS-CoV spike (S) protein or its secreted soluble ectodomain (Ssol). In mice susceptible to measles virus, recombinant MV expressing the anchored full-length S induced the highest titers of neutralizing antibodies and fully protected immunized animals from intranasal infectious challenge with SARS-CoV. As compared to immunization with adjuvanted recombinant Ssol protein, recombinant MV induced stronger and Th1-biased responses, a hallmark of live attenuated viruses and a highly desirable feature for an antiviral vaccine.


Subject(s)
Measles virus/genetics , Severe Acute Respiratory Syndrome/prevention & control , Severe acute respiratory syndrome-related coronavirus/physiology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Male , Measles Vaccine/genetics , Measles Vaccine/immunology , Measles virus/immunology , Mice , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics , Th1 Cells/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Viral Vaccines/immunology
19.
PLoS One ; 9(1): e86658, 2014.
Article in English | MEDLINE | ID: mdl-24475165

ABSTRACT

Yeasts are largely used as bioreactors for vaccine production. Usually, antigens are produced in yeast then purified and mixed with adjuvants before immunization. However, the purification costs and the safety concerns recently raised by the use of new adjuvants argue for alternative strategies. To this end, the use of whole yeast as both production and delivery system appears attractive. Here, we evaluated Pichia pastoris yeast as an alternative vaccine production and delivery system for the circumsporozoite protein (CS) of Plasmodium, the etiologic agent of malaria. The CS protein from Plasmodium berghei (Pb) was selected given the availability of the stringent C57Bl/6 mouse model of infection by Pb sporozoites, allowing the evaluation of vaccine efficacy in vivo. PbCS was multimerized by fusion to the measles virus (MV) nucleoprotein (N) known to auto-assemble in yeast in large-size ribonucleoprotein rods (RNPs). Expressed in P. pastoris, the N-PbCS protein generated highly multimeric and heterogenic RNPs bearing PbCS on their surface. Electron microscopy and immunofluorescence analyses revealed the shape of these RNPs and their localization in peripheral cytoplasmic inclusions. Subcutaneous immunization of C57Bl/6 mice with heat-inactivated whole P. pastoris expressing N-PbCS RNPs provided significant reduction of parasitemia after intradermal challenge with a high dose of parasites. Thus, in the absence of accessory adjuvants, a very low amount of PbCS expressed in whole yeast significantly decreased clinical damages associated with Pb infection in a highly stringent challenge model, providing a proof of concept of the intrinsic adjuvancy of this vaccine strategy. In addition to PbCS multimerization, the N protein contributed by itself to parasitemia delay and long-term mice survival. In the future, mixtures of whole recombinant yeasts expressing relevant Plasmodium antigens would provide a multivalent formulation applicable for antigen combination screening and possibly for large-scale production, distribution and delivery of a malaria vaccine in developing countries.


Subject(s)
Bioreactors , Drug Delivery Systems/methods , Malaria Vaccines/biosynthesis , Pichia/metabolism , Plasmodium berghei/chemistry , Protozoan Proteins/metabolism , Animals , Drug Discovery , Fluorescent Antibody Technique , Malaria Vaccines/administration & dosage , Measles virus/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Electron , Nucleoproteins/metabolism , Protozoan Proteins/isolation & purification , Ribonucleoproteins/biosynthesis
20.
Vaccine ; 31(36): 3718-25, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23742993

ABSTRACT

Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, recently reemerged in the Indian Ocean, India and Southeast Asia, causing millions of cases of severe polyarthralgia. No specific treatment to prevent disease or vaccine to limit epidemics is currently available. Here we describe a recombinant live-attenuated measles vaccine (MV) expressing CHIKV virus-like particles comprising capsid and envelope structural proteins from the recent CHIKV strain La Reunion. Immunization of mice susceptible to measles virus induced high titers of CHIKV antibodies that neutralized several primary isolates. Specific cellular immune responses were also elicited. A single immunization with this vaccine candidate protected all mice from a lethal CHIKV challenge, and passive transfer of immune sera conferred protection to naïve mice. Measles vaccine is one of the safest and most effective human vaccines. A recombinant MV-CHIKV virus could make a safe and effective vaccine against chikungunya that deserves to be further tested in human trials.


Subject(s)
Alphavirus Infections/prevention & control , Chikungunya virus/immunology , Measles Vaccine/immunology , Vaccines, Virus-Like Particle/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Capsid Proteins/immunology , Chikungunya Fever , Chlorocebus aethiops , Cross Reactions , Immune Sera/immunology , Immunity, Cellular , Immunization, Passive , Mice , Mice, Transgenic , Vaccines, Attenuated/immunology , Vero Cells , Viral Envelope Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...