Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39273200

ABSTRACT

Thrombosis is a key process that determines acute coronary syndrome and ischemic stroke and is the leading cause of morbidity and mortality in the world, together with cancer. Platelet adhesion and subsequent activation and aggregation are critical processes that cause thrombus formation after endothelial damage. To date, high hopes are associated with compounds of natural origin, which show anticoagulant action without undesirable effects and can be proposed as supportive therapies. We investigated the effect of the new combination of four natural compounds, escin-bromelain-ginkgo biloba-sage miltiorrhiza (EBGS), on the initial process of the coagulation cascade, which is the adhesion of platelets to activated vascular endothelium. Our results demonstrated that EBGS pretreatment of endothelial cells reduces platelet adhesion even in the presence of the monocyte-lymphocyte population. Our data indicate that EBGS exerts its effects by inhibiting the transcription of adhesion molecules, including P-selectin, platelet membrane glycoprotein GP1b, integrins αV and ß3, and reducing the secretion of the pro-inflammatory cytokines interleukin 6, interleukin 8, and the metalloproteinases MMP-2 and MMP-9. Furthermore, we demonstrated that EBGS inhibited the expression of focal adhesion kinase (FAK), strictly involved in platelet adhesion, and whose activity is correlated with that of integrin ß3. The results shown in this manuscript suggest a possible inhibitory role of the new combination EBGS in the reduction in platelet adhesion to activated endothelium, thus possibly preventing coagulation cascade initiation.


Subject(s)
Endothelium, Vascular , Platelet Adhesiveness , Signal Transduction , Tumor Necrosis Factor-alpha , Humans , Platelet Adhesiveness/drug effects , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Blood Platelets/metabolism , Blood Platelets/drug effects , Salvia miltiorrhiza/chemistry , Focal Adhesion Kinase 1/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Plant Extracts/pharmacology
2.
J Exp Clin Cancer Res ; 43(1): 217, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098911

ABSTRACT

Aberrant alternative splicing events play a critical role in cancer biology, contributing to tumor invasion, metastasis, epithelial-mesenchymal transition, and drug resistance. Recent studies have shown that alternative splicing is a key feature for transcriptomic variations in colorectal cancer, which ranks third among malignant tumors worldwide in both incidence and mortality. Long non-coding RNAs can modulate this process by acting as trans-regulatory agents, recruiting splicing factors, or driving them to specific targeted genes. LncH19 is a lncRNA dis-regulated in several tumor types and, in colorectal cancer, it plays a critical role in tumor onset, progression, and metastasis. In this paper, we found, that in colorectal cancer cells, the long non-coding RNA H19 can bind immature RNAs and splicing factors as hnRNPM and RBFOX2. Through bioinformatic analysis, we identified 57 transcripts associated with lncH19 and containing binding sites for both splicing factors, hnRNPM, and RBFOX2. Among these transcripts, we identified the mRNA of the GTPase-RAC1, whose alternatively spliced isoform, RAC1B, has been ascribed several roles in the malignant transformation. We confirmed, in vitro, the binding of the splicing factors to both the transcripts RAC1 and lncH19. Loss and gain of expression experiments in two colorectal cancer cell lines (SW620 and HCT116) demonstrated that lncH19 is required for RAC1B expression and, through RAC1B, it induces c-Myc and Cyclin-D increase. In vivo, investigation from biopsies of colorectal cancer patients showed higher levels of all the explored genes (lncH19, RAC1B, c-Myc and Cyclin-D) concerning the healthy counterpart, thus supporting our in vitro model. In addition, we identified a positive correlation between lncH19 and RAC1B in colorectal cancer patients. Finally, we demonstrated that lncH19, as a shuttle, drives the splicing factors RBFOX2 and hnRNPM to RAC1 allowing exon retention and RAC1B expression. The data shown in this paper represent the first evidence of a new mechanism of action by which lncH19 carries out its functions as an oncogene by prompting colorectal cancer through the modulation of alternative splicing.


Subject(s)
Alternative Splicing , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , RNA Splicing Factors , RNA, Long Noncoding , rac1 GTP-Binding Protein , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , RNA, Long Noncoding/genetics , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Cell Line, Tumor , Heterogeneous-Nuclear Ribonucleoprotein Group M/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group M/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
3.
Biomed Pharmacother ; 174: 116514, 2024 May.
Article in English | MEDLINE | ID: mdl-38574618

ABSTRACT

Plant-derived nanovesicles (PDNVs) have recently emerged as natural delivery systems of biofunctional compounds toward mammalian cells. Considering their already described composition, anti-inflammatory properties, stability, and low toxicity, PDNVs offer a promising path for developing new preventive strategies for several inflammatory diseases, among which the inflammatory bowel disease (IBD). In this study, we explore the protective effects of industrially produced lemon vesicles (iLNVs) in a rat model of IBD. Characterization of iLNVs reveals the presence of small particles less than 200 nm in size and a profile of bioactive compounds enriched in flavonoids and organic acids with known beneficial properties. In vitro studies on human macrophages confirm the safety and anti-inflammatory effects of iLNVs, as evidenced by the reduced expression of pro-inflammatory cytokines and increased levels of anti-inflammatory markers. As evidenced by in vivo experiments, pre-treatment with iLNVs significantly alleviates symptoms and histological features in 2,4 dinitrobenzensulfuric acid (DNBS)-induced colitis in rats. Molecular pathway analysis reveals modulation of NF-κB and Nrf2, indicating anti-inflammatory and antioxidant effects. Finally, iLNVs affects gut microbiota composition, improving the consistent colitis-related alterations. Overall, we demonstrated the protective role of industrially produced lemon nanovesicles against colitis and emphasized their potential in managing IBD through multifaceted mechanisms.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Citrus , Colitis , Gastrointestinal Microbiome , Animals , Anti-Inflammatory Agents/pharmacology , Citrus/chemistry , Colitis/pathology , Colitis/drug therapy , Colitis/chemically induced , Colitis/microbiology , Colitis/metabolism , Male , Antioxidants/pharmacology , Rats , Humans , Gastrointestinal Microbiome/drug effects , Nanoparticles/chemistry , Rats, Wistar , Disease Models, Animal , Cytokines/metabolism , NF-kappa B/metabolism
4.
Biology (Basel) ; 12(12)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38132361

ABSTRACT

Lemon essential oil (LEO) is known for its aromatic and healthy properties; however, less consideration is given to the biological properties of the fractions obtained from LEO. This study aims to evaluate the ability of a citral-enriched fraction obtained from LEO (Cfr-LEO) to counteract lipopolysaccharide (LPS)-mediated inflammation, oxidative stress, and epithelial-mesenchymal transition (EMT) in healthy human hepatocytes. Human immortalized hepatocytes (THLE-2 cell line) were pretreated with Cfr-LEO and subsequently exposed to LPS at various time points. We report that the pretreatment with Cfr-LEO counteracts LPS-mediated effects by inhibiting inflammation, oxidative stress, and epithelial-mesenchymal transition in THLE-2. In particular, we found that pretreatment with Cfr-LEO reduced NF-κB activation and the subsequent proinflammatory cytokines release, ROS production, and NRF2 and p53 expression. Furthermore, the pretreatment with Cfr-LEO showed its beneficial effect in counteracting LPS-induced EMT. Taken together, these results support Cfr-LEO application in the nutraceutical research field not only for its organoleptic properties, conferred by citral enrichment, but also for its biological activity. Our study could lay the basis for the development of foods/drinks enriched with Cfr-LEO, aimed at preventing or alleviating chronic conditions associated with liver dysfunction.

5.
Front Pharmacol ; 14: 1275833, 2023.
Article in English | MEDLINE | ID: mdl-37841928

ABSTRACT

Introduction: Long non-coding RNA H19 (lncH19) is highly expressed in colorectal cancer (CRC) and plays critical roles in tumor development, proliferation, metastasis, and drug resistance. Indeed, the expression of lncH19 usually affects the outcomes of chemo-, endocrine, and targeted therapies. ITF2357 (givinostat) is a histone deacetylase inhibitor (HDACi) that revealed a significant anti-tumor action by inducing apoptosis in different tumor models, including leukemia, melanoma, and glioblastoma. However, no data are present in the literature regarding the use of this compound for CRC treatment. Here, we investigate the role of lncH19 in ITF2357-induced apoptosis in CRC cells. Methods: The HCT-116 CRC cell line was stably silenced for H19 to investigate the role of this lncRNA in ITF2357-induced cell death. Cell viability assays and flow cytometric analyses were performed to assess the anti-proliferative and pro-apoptotic effects of ITF2357 in CRC cell lines that are silenced or not for lncH19. RT-PCR and Western blot were used to study the effects of ITF2357 on autophagy and apoptosis markers. Finally, bioinformatics analyses were used to identify miRNAs targeting pro-apoptotic factors that can be sponged by lncH19. Results: ITF2357 increased the expression levels of H19 and reduced HCT-116 cell viability, inducing apoptosis, as demonstrated by the increase in annexin-V positivity, caspase 3 cleavage, and poly (ADP-ribose) polymerase (PARP-1) degradation. Interestingly, the apoptotic effect of ITF2357 was much less evident in lncH19-silenced cells. We showed that lncH19 plays a functional role in the pro-apoptotic activity of the drug by stabilizing TP53 and its transcriptional targets, NOXA and PUMA. ITF2357 also induced autophagy in CRC cells, which was interpreted as a pro-survival response not correlated with lncH19 expression. Furthermore, ITF2357 induced apoptosis in 5-fluorouracil-resistant HCT-116 cells that express high levels of lncH19. Conclusion: This study shows that lncH19 expression contributes to ITF2357-induced apoptosis by stabilizing TP53. Overall, we suggest that lncH19 expression may be exploited to favor HDACi-induced cell death and overcome 5-fluorouracil chemoresistance.

6.
iScience ; 26(7): 107041, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37426343

ABSTRACT

In the last years, extracellular vesicles (EVs) from different plant matrices have been isolated and gained the interest of the scientific community for their intriguing biological properties. In this study, we isolated and characterized nanovesicles from lemon juice (LNVs) and evaluated their antioxidant effects. We tested LNV antioxidant activity using human dermal fibroblasts that were pre-treated with LNVs for 24 h and then stimulated with hydrogen peroxide (H2O2) and UVB irradiation. We found that LNV pre-treatment reduced ROS levels in fibroblasts stimulated with H2O2 and UVB. This reduction was associated with the activation of the AhR/Nrf2 signaling pathway, whose protein expression and nuclear localization was increased in fibroblasts treated with LNVs. By using zebrafish embryos as in vivo model, we confirmed the antioxidant effects of LNVs. We found that LNVs reduced ROS levels and neutrophil migration in zebrafish embryos stimulated with LPS.

7.
Cancer Cell Int ; 23(1): 77, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072829

ABSTRACT

BACKGROUND: Metastatic disease is the major cause of cancer-related deaths. Increasing evidence shows that primary tumor cells can promote metastasis by preparing the local microenvironment of distant organs, inducing the formation of the so-called "pre-metastatic niche". In recent years, several studies have highlighted that among the tumor-derived molecular components active in pre-metastatic niche formation, small extracellular vesicles (sEVs) play a crucial role. Regarding liver metastasis, the ability of tumor-derived sEVs to affect the activities of non-parenchymal cells such as Kupffer cells and hepatic stellate cells is well described, while the effects on hepatocytes, the most conspicuous and functionally relevant hepatic cellular component, remain unknown. METHODS: sEVs isolated from SW480 and SW620 CRC cells and from clinical samples of CRC patients and healthy subjects were used to treat human healthy hepatocytes (THLE-2 cells). RT-qPCR, Western blot and confocal microscopy were applied to investigate the effects of this treatment. RESULTS: Our study shows for the first time that TGFß1-carrying CRC_sEVs impair the morphological and functional properties of healthy human hepatocytes by triggering their TGFß1/SMAD-dependent EMT. These abilities of CRC_sEVs were further confirmed by evaluating the effects elicited on hepatocytes by sEVs isolated from plasma and biopsies from CRC patients. CONCLUSIONS: Since it is known that EMT of hepatocytes leads to the formation of a fibrotic environment, a well-known driver of metastasis, these results suggest that CRC_sEV-educated hepatocytes could have an active and until now neglected role during liver metastasis formation.

8.
Cell Biol Int ; 47(3): 634-647, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36378586

ABSTRACT

Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Given the ability of tumors to interfere with multiple or different molecular pathways to promote angiogenesis, there is an increasing need to therapeutically block tumor progression by targeting multiple antiangiogenic pathways. Natural polyphenols present health-protective properties, which are likely attributed to their ability to activate multiple pathways involved in inflammation, carcinogenesis, and angiogenesis. Recently, increased attention has been addressed to the ability of flavonoids, the most abundant polyphenols in the diet, to prevent cancer by suppressing angiogenesis. Here we investigate the mechanisms by which xanthohumol (the major prenylated flavonoid of the hop plant Humulus lupulus L.) and nobiletin (flavonoid from red-orange Citrus sinensis) can modulate the effects of Tumor Necrosis Factor-α (TNF-α) on human umbilical vein endothelial cells (HUVEC). The results reported in this paper show that xanthohumol and nobiletin pretreatment of HUVEC inhibits the effects induced by TNF-α on cell migration, invasion capability, and colon cancer cell adhesion on the endothelial monolayer. Moreover, the pretreatment reduces metalloproteinases and adhesion molecules' expression. Finally, our results highlight that xanthohumol and nobiletin can counteract the effects of TNF-α on angiogenesis and invasiveness, mainly through Vascular Endothelial Growth Factor and NF-κB pathways. Since angiogenesis plays an important pathological role in the progression of several diseases, our findings may provide clues for developing xanthohumol and nobiletin as therapeutic agents against angiogenesis-associated diseases.


Subject(s)
NF-kappa B , Neoplasms , Humans , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Flavonoids/pharmacology , Signal Transduction , Neoplasms/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Polyphenols/metabolism , Polyphenols/pharmacology
9.
Int J Mol Sci ; 25(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38203716

ABSTRACT

In the last years, the field of nanomedicine and drug delivery has grown exponentially, providing new platforms to carry therapeutic agents into the target sites. Extracellular vesicles (EVs) are ready-to-use, biocompatible, and non-toxic nanoparticles that are revolutionizing the field of drug delivery. EVs are involved in cell-cell communication and mediate many physiological and pathological processes by transferring their bioactive cargo to target cells. Recently, nanovesicles from plants (PDNVs) are raising the interest of the scientific community due to their high yield and biocompatibility. This study aims to evaluate whether PDNVs may be used as drug delivery systems. We isolated and characterized nanovesicles from tangerine juice (TNVs) that were comparable to mammalian EVs in size and morphology. TNVs carry the traditional EV marker HSP70 and, as demonstrated by metabolomic analysis, contain flavonoids, organic acids, and limonoids. TNVs were loaded with DDHD1-siRNA through electroporation, obtaining a loading efficiency of 13%. We found that the DDHD1-siRNA complex TNVs were able to deliver DDHD1-siRNA to human colorectal cancer cells, inhibiting the target expression by about 60%. This study represents a proof of concept for the use of PDNVs as vehicles of RNA interference (RNAi) toward mammalian cells.


Subject(s)
Citrus , Colorectal Neoplasms , Humans , Animals , RNA, Small Interfering/genetics , Proof of Concept Study , Cell Line , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Mammals
10.
J Cell Mol Med ; 26(15): 4195-4209, 2022 08.
Article in English | MEDLINE | ID: mdl-35789531

ABSTRACT

Chronic inflammation is associated with the occurrence of several diseases. However, the side effects of anti-inflammatory drugs prompt the identification of new therapeutic strategies. Plant-derived extracellular vesicles (PDEVs) are gaining increasing interest in the scientific community for their biological properties. We isolated PDEVs from the juice of Citrus limon L. (LEVs) and characterized their flavonoid, limonoid and lipid contents through reversed-phase high-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (RP-HPLC-ESI-Q-TOF-MS). To investigate whether LEVs have a protective role on the inflammatory process, murine and primary human macrophages were pre-treated with LEVs for 24 h and then were stimulated with lipopolysaccharide (LPS). We found that pre-treatment with LEVs decreased gene and protein expression of pro-inflammatory cytokines, such as IL-6, IL1-ß and TNF-α, and reduced the nuclear translocation and phosphorylation of NF-κB in LPS-stimulated murine macrophages. The inhibition of NF-κB activation was associated with the reduction in ERK1-2 phosphorylation. Furthermore, the ability of LEVs to decrease pro-inflammatory cytokines and increase anti-inflammatory molecules was confirmed ex vivo in human primary T lymphocytes. In conclusion, we demonstrated that LEVs exert anti-inflammatory effects both in vitro and ex vivo by inhibiting the ERK1-2/NF-κB signalling pathway.


Subject(s)
Citrus , Extracellular Vesicles , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Citrus/metabolism , Cytokines/metabolism , Extracellular Vesicles/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Mice , NF-kappa B/metabolism
11.
BMC Cancer ; 22(1): 567, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35596172

ABSTRACT

BACKGROUND: The uncontrolled proliferation of cancer cells determines hypoxic conditions within the neoplastic mass with consequent activation of specific molecular pathways that allow cells to survive despite oxygen deprivation. The same molecular pathways are often the cause of chemoresistance. This study aims to investigate the role of the hypoxia-induced miR-675-5p in 5-Fluorouracil (5-FU) resistance on colorectal cancer (CRC) cells. METHODS: CRC cell lines were treated with 5-Fu and incubated in normoxic or hypoxic conditions; cell viability has been evaluated by MTT assay. MiR-675-5p levels were analysed by RT-PCR and loss and gain expression of the miRNA has been obtained by the transfection of miRNA antagomir or miRNA mimic. Total protein expression of different apoptotic markers was analysed through western blot assay. MirWalk 2.0 database search engine was used to investigate the putative targets of the miR-675-5p involved in the apoptotic process. Finally, the luciferase assay was done to confirm Caspase-3 as a direct target of the miR-675-5p. RESULTS: Our data demonstrated that hypoxia-induced miR-675-5p counteracts the apoptotic signal induced by 5-FU, thus taking part in the drug resistance response. We showed that the apoptotic markers, cleaved PARP and cleaved caspase-3, increased combining miR-675-5p inhibition with 5-FU treatment. Moreover, we identified pro-caspase-3 among the targets of the miR-675-5p. CONCLUSION: Our data demonstrate that the inhibition of hypoxia-induced miR-675-5p combined with 5-FU treatment can enhances drug efficacy in both prolonged hypoxia and normoxia, indicating a possible strategy to partially overcome chemoresistance.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , MicroRNAs , Apoptosis/genetics , Caspase 3/metabolism , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Gene Expression Regulation, Neoplastic , Humans , Hypoxia/genetics , Hypoxia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
12.
Cells ; 10(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34943863

ABSTRACT

In the last decade, an increasing number of studies have demonstrated that non-coding RNA (ncRNAs) cooperate in the gene regulatory networks with other biomolecules, including coding RNAs, DNAs and proteins. Among them, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are involved in transcriptional and translation regulation at different levels. Intriguingly, ncRNAs can be packed in vesicles, released in the extracellular space, and finally internalized by receiving cells, thus affecting gene expression also at distance. This review focuses on the mechanisms through which the ncRNAs can be selectively packaged into extracellular vesicles (EVs).


Subject(s)
Extracellular Vesicles/metabolism , RNA/metabolism , Animals , Humans , Models, Biological , Proteins/metabolism , RNA/genetics , RNA Transport
13.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34829995

ABSTRACT

Tumor-associated macrophages play a key role in promoting tumor progression by exerting an immunosuppressive phenotype associated with the expression of programmed cell death ligand 1 (PD-L1). It is well known that tumor-derived small extracellular vesicles (SEVs) affect the tumor microenvironment, influencing TAM behavior. The present study aimed to examine the effect of SEVs derived from colon cancer and multiple myeloma cells on macrophage functions. Non-polarized macrophages (M0) differentiated from THP-1 cells were co-cultured with SEVs derived from a colorectal cancer (CRC) cell line, SW480, and a multiple myeloma (MM) cell line, MM1.S. The expression of PD-L1, interleukin-6 (IL-6), and other inflammatory cytokines as well as of the underlying molecular mechanisms were evaluated. Our results indicate that SEVs can significantly upregulate the expressions of PD-L1 and IL-6 at both the mRNA and protein levels and can activate the STAT3 signaling pathway. Furthermore, we identified the TLR4/NF-kB pathway as a convergent mechanism for SEV-mediated PD-L1 expression. Overall, these preliminary data suggest that SEVs contribute to the formation of an immunosuppressive microenvironment.


Subject(s)
B7-H1 Antigen/genetics , Colonic Neoplasms/genetics , Interleukin-6/genetics , STAT3 Transcription Factor/genetics , Toll-Like Receptor 4/genetics , Cell Line, Tumor , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Extracellular Vesicles/genetics , Extracellular Vesicles/immunology , Gene Expression Regulation, Neoplastic/genetics , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Signal Transduction/genetics , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology
14.
Mitochondrion ; 60: 178-188, 2021 09.
Article in English | MEDLINE | ID: mdl-34454074

ABSTRACT

Altered insulin signaling and insulin resistance are considered the link between Alzheimer's disease (AD) and metabolic syndrome. Here, by using an in vitro and an in vivo model, we investigated the relationship between these disorders focusing on neuronal mitochondrial dysfunction and mitophagy. In vitro Aß insult induced the opening of mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (ΔΨm) loss, and apoptosis while insulin addition ameliorated these dysfunctions. The same alterations were detected in a 16 weeks of age mouse model of diet-induced obesity and insulin resistance. In addition, we detected an increase of fission related proteins and activation of mitophagy, proved by the rise of PINK1 and Parkin proteins. Nevertheless, in vitro, the increase of p62 and LC3 indicated an alteration in autophagy, while, in vivo decreased expression of p62 and increase of LC3 suggested removing of damaged mitochondria. Finally, in aged mice (28 and 48 weeks), the data indicated impairment of mitophagy and suggested the accumulation of damaged mitochondria. Taken together these outcomes indicate that alteration of the insulin pathway affects mitochondrial integrity, and effective mitophagy is age-dependent.


Subject(s)
Insulin/metabolism , Mitochondria/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Cell Line, Tumor , Diet, High-Fat/adverse effects , Humans , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Signal Transduction
15.
Metabolites ; 11(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925596

ABSTRACT

Appropriate monitoring and control of modifiable risk factors, such as the level of low-density lipoprotein cholesterol (LDL-C) and other types of dyslipidemia, have an important role in the prevention of cardiovascular diseases (CVD). Recently, various nutraceuticals with lipid-lowering effects have gained attention. In addition to the plant-derived bioactive compounds, recent studies suggested that plant cells are able to release small lipoproteic structures named extracellular vesicles (EVs). The interaction between EVs and mammalian cells could lead to beneficial effects through anti-inflammatory and antioxidant activities. The present study aimed to assess the safety of the new patented plant-based product citraVes™, containing extracellular vesicles (EVs) from Citrus limon (L.) Osbeck juice, and to investigate its ability to modulate different CV risk factors in healthy subjects. A cohort of 20 healthy volunteers was recruited in a prospective open-label study. All participants received the supplement in a spray-dried formulation at a stable dose of 1000 mg/day for 3 months. Anthropometric and hematobiochemical parameters were analyzed at the baseline and after the follow-up period of 1 and 3 months. We observed that the supplement has an effect on two key factors of cardiometabolic risk in healthy subjects. A significant change in waist circumference was found in women after 4 (85.4 [79.9, 91.0] cm, p < 0.005) and 12 (85.0 [80.0, 90.0] cm, p < 0.0005) weeks, when compared to the baseline value (87.6 [81.7, 93.6] cm). No difference was found in men (baseline: 100.3 [95.4, 105.2] cm; 4 weeks: 102.0 [95.7, 108.3] cm; 12 weeks: 100.0 [95.3, 104.7] cm). The level of LDL-C was significantly lower at 12 weeks versus 4 weeks (p = 0.0064). Our study evaluated, for the first time, the effects of a natural product containing plant-derived EVs on modifiable risk factors in healthy volunteers. The results support the use of EV extracts to manage cardiometabolic risk factors successfully.

16.
Pharmaceutics ; 13(4)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916918

ABSTRACT

Recently, rapamycin (Rapa) represents a potential drug treatment to induce regression of atherosclerotic plaques; however, its use requires site-specific accumulation in the vessels involved in the formation of the plaques to avoid the systemic effects resulting from its indiscriminate biodistribution. In this work, a stable pharmaceutical formulation for Rapa was realized as a dried powder to be dispersed extemporaneously before administration. The latter was constituted by mannitol (Man) as an excipient and a Rapa-loaded polymeric nanoparticle carrier. These nanoparticles were obtained by nanoprecipitation and using as a starting polymeric material a polycaprolactone (PCL)/α,ß-poly(N-2-hydroxyethyl)-dl-aspartamide (PHEA) graft copolymer. To obtain nanoparticles targeted to macrophages, an oxidized phospholipid with a high affinity for the CD36 receptor of macrophages, the 1-(palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine (KOdia-PC), was added to the starting organic phase. The chemical-physical and technological characterization of the obtained nanoparticles demonstrated that: both the drug loading (DL%) and the entrapment efficiency (EE%) entrapped drug are high; the entrapped drug is in the amorphous state, protected from degradation and slowly released from the polymeric matrix; and the KOdia-PC is on the nanoparticle surface (KP-Nano). The biological characterization demonstrated that both systems are quickly internalized by macrophages while maintaining the activity of the drug. In vitro studies demonstrated that the effect of KP-Nano Rapa-loaded, in reducing the amount of the Phospo-Ser757-ULK1 protein through the inhibition of the mammalian target of rapamycin (mTOR), is comparable to that of the free drug.

17.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671114

ABSTRACT

Osteoarthritis (OA) is a degenerative bone disease that involved micro and macro-environment of joints. To date, there are no radical curative treatments for OA and novel therapies are mandatory. Recent evidence suggests the role of miRNAs in OA progression. In our previous studies, we demonstrated the role of miR-31-5p and miR-33a families in different bone regeneration signaling. Here, we investigated the role of miR-31-5p and miR-33a-5p in OA progression. A different expression of miR-31-5p and miR-33a-5p into osteoblasts and chondrocytes isolated from joint tissues of OA patients classified in based on different Kellgren and Lawrence (KL) grading was highlighted; and through a bioinformatic approach the common miRNAs target Specificity proteins (Sp1) were identified. Sp1 regulates the expression of gap junction protein Connexin43 (Cx43), which in OA drives the modification of i) osteoblasts and chondrocytes genes expression, ii) joint inflammation cytokines releases and iii) cell functions. Concerning this, thanks to gain and loss of function studies, the possible role of Sp1 as a modulator of CX43 expression through miR-31-5p and miR-33a-5p action was also evaluated. Finally, we hypothesize that both miRNAs cooperate to modulate the expression of SP1 in osteoblasts and chondrocytes and interfering, consequently, with CX43 expression, and they might be further investigated as new possible biomarkers for OA.


Subject(s)
Connexin 43/metabolism , Gene Expression Regulation , MicroRNAs/genetics , Osteoarthritis/pathology , Osteoblasts/pathology , Sp1 Transcription Factor/metabolism , Adult , Aged , Cells, Cultured , Connexin 43/genetics , Female , Follow-Up Studies , Humans , Male , Middle Aged , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoblasts/metabolism , Prognosis , Signal Transduction , Sp1 Transcription Factor/genetics
18.
Int J Mol Sci ; 22(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673376

ABSTRACT

Hypoxia, a characteristic of the tumour microenvironment, plays a crucial role in cancer progression and therapeutic response. The hypoxia-inducible factors (HIF-1α, HIF-2α, and HIF-3α), are the master regulators in response to low oxygen partial pressure, modulating hypoxic gene expression and signalling transduction pathways. HIFs' activation is sufficient to change the cell phenotype at multiple levels, by modulating several biological activities from metabolism to the cell cycle and providing the cell with new characteristics that make it more aggressive. In the past few decades, growing numbers of studies have revealed the importance of non-coding RNAs (ncRNAs) as molecular mediators in the establishment of hypoxic response, playing important roles in regulating hypoxic gene expression at the transcriptional, post-transcriptional, translational, and posttranslational levels. Here, we review recent findings on the different roles of hypoxia-induced ncRNAs in cancer focusing on the data that revealed their involvement in tumour growth.


Subject(s)
Neoplasms/metabolism , RNA, Neoplasm/metabolism , RNA, Untranslated/metabolism , Signal Transduction , Tumor Microenvironment , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Hypoxia , Cell Survival , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/pathology , RNA, Neoplasm/genetics , RNA, Untranslated/genetics
19.
Biomedicines ; 8(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081183

ABSTRACT

Teeth extractions are often followed by alveolar bone reabsorption, although an adequate level of bone is required for reliable rehabilitations by dental implants. Leukocyte and platelet-rich fibrin (L-PRF) has been widely applied in regenerative procedures and with antibiotic and antioxidant agents could play an essential role in hard and soft tissue healing. In this work, a nanocomposite (Sponge-C-MTR) consisting of a hyaluronate-based sponge loaded with metronidazole (MTR) and nanostructured lipid carriers containing curcumin (CUR-NLC) was designed to be wrapped in the L-PRF™ membrane in the post-extraction sockets and characterized. CUR-NLCs, obtained by homogenization followed by high-frequency sonication of the lipid mixture, showed loading capacity (5% w/w), drug recovery (95% w/w), spherical shape with an average particle size of 112.0 nm, and Zeta potential of -24 mV. Sponge-C-MTR was obtained by entrapping CUR-NLC in a hydrophilic matrix by a freeze-drying process, and physico-chemical and cytocompatibility properties were evaluated. Moreover, the aptitude of CUR and MTR to the penetrate and/or permeate both L-PRF™ and porcine buccal tissue was assessed, highlighting MTR penetration and CUR accumulation promoted by the system. The results positively support the action of nanocomposite in dental tissues regeneration when applied together with the L-PRF™.

20.
Foods ; 9(9)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937843

ABSTRACT

Lemon essential oil (LEO) is a well-known flavoring agent with versatile biological activities. In the present study, we have isolated and characterized four citral-enriched fractions of winter LEO. We reported that in murine and human macrophages the pre-treatment with a mix of these fractions (Cfr-LEO) reduces the expression of the pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 induced by LPS. In addition, Cfr-LEO counteracts LPS-induced oxidative stress, as shown by the increase in the GSH/GSSG ratio in comparison to cells treated with LPS alone. Overall, the results reported here encourage the application of EO fractions, enriched in citral, in the nutraceutical industry, not only for its organoleptic properties but also for its protective action against inflammation and oxidative stress.

SELECTION OF CITATIONS
SEARCH DETAIL