Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
ISME J ; 18(1)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38365261

In marine sediments, microbial degradation of organic matter under anoxic conditions is generally thought to proceed through fermentation to volatile fatty acids, which are then oxidized to CO2 coupled to the reduction of terminal electron acceptors (e.g. nitrate, iron, manganese, and sulfate). It has been suggested that, in environments with a highly variable oxygen regime, fermentation mediated by facultative anaerobic bacteria (uncoupled to external terminal electron acceptors) becomes the dominant process. Here, we present the first direct evidence for this fermentation using a novel differentially labeled glucose isotopologue assay that distinguishes between CO2 produced from respiration and fermentation. Using this approach, we measured the relative contribution of respiration and fermentation of glucose in a range of permeable (sandy) and cohesive (muddy) sediments, as well as four bacterial isolates. Under anoxia, microbial communities adapted to high-energy sandy or bioturbated sites mediate fermentation via the Embden-Meyerhof-Parnas pathway, in a manner uncoupled from anaerobic respiration. Prolonged anoxic incubation suggests that this uncoupling lasts up to 160 h. In contrast, microbial communities in anoxic muddy sediments (smaller median grain size) generally completely oxidized 13C glucose to 13CO2, consistent with the classical redox cascade model. We also unexpectedly observed that fermentation occurred under oxic conditions in permeable sediments. These observations were further confirmed using pure cultures of four bacteria isolated from permeable sediments. Our results suggest that microbial communities adapted to variable oxygen regimes metabolize glucose (and likely other organic molecules) through fermentation uncoupled to respiration during transient anoxic conditions.


Geologic Sediments , Glucose , Geologic Sediments/microbiology , Glucose/metabolism , Carbon Dioxide/metabolism , Bacteria/genetics , Bacteria/metabolism , Oxidation-Reduction , Oxygen/metabolism
2.
Ecotoxicol Environ Saf ; 258: 114955, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37121076

The effect of mean flow velocity on phosphorus (P) partitioning between water and sediment has received much attention in recent decades. However, the impact of turbulence on the efficiency and capability of sediment adsorbing and desorbing dissolved inorganic phosphorus (DIP) is still unclear. A series of contrasting experiments on the sediment sorption and desorption of DIP with the flow turbulence kinetic energy (TKE) ranging from 1.95 to 2.93 pa have been conducted. It was found that the adsorbed P onto unit mass of sediment increases with the increase in TKE. It is because an increase in TKE results in a rise in the effective adsorption capacity of sediment (bm) by 20-30% during the adsorption process. The bm shows the maximum rise from 0.18 to 0.25 mg/g when TKE increases from 1.95 to 2.93 pa with a fixed sediment concentration of 0.5 g/L. To account for the direct effect of TKE on P adsorption, the Langmuir model is modified by introducing a newly defined coefficient (fA-TKE). The fA-TKE shows a good linear relationship with TKE. Comparison between the modified model and the classic model shows that the amount of adsorbed P could be overestimated by over 50% if the direct effect of turbulence intensity is ignored. The experimental data show that the increase in TKE also enhances the desorption process, with the degree of P desorption (Ddes) increased by 44%. The relation between Ddes and TKE can be well represented using a logarithmic function to quantify the direct effect of turbulence intensity on desorption of P.


Phosphorus , Water Pollutants, Chemical , Geologic Sediments , Adsorption , Water , Water Pollutants, Chemical/analysis
3.
Nat Microbiol ; 8(4): 581-595, 2023 04.
Article En | MEDLINE | ID: mdl-36747116

Molecular hydrogen (H2) is an abundant and readily accessible energy source in marine systems, but it remains unknown whether marine microbial communities consume this gas. Here we use a suite of approaches to show that marine bacteria consume H2 to support growth. Genes for H2-uptake hydrogenases are prevalent in global ocean metagenomes, highly expressed in metatranscriptomes and found across eight bacterial phyla. Capacity for H2 oxidation increases with depth and decreases with oxygen concentration, suggesting that H2 is important in environments with low primary production. Biogeochemical measurements of tropical, temperate and subantarctic waters, and axenic cultures show that marine microbes consume H2 supplied at environmentally relevant concentrations, yielding enough cell-specific power to support growth in bacteria with low energy requirements. Conversely, our results indicate that oxidation of carbon monoxide (CO) primarily supports survival. Altogether, H2 is a notable energy source for marine bacteria and may influence oceanic ecology and biogeochemistry.


Bacteria , Seawater , Bacteria/genetics , Seawater/microbiology , Hydrogen , Oxidation-Reduction , Oceans and Seas
4.
Limnol Oceanogr ; 68(9): 2141-2152, 2023 Sep.
Article En | MEDLINE | ID: mdl-38516532

Dihydrogen (H2) is an important intermediate in anaerobic microbial processes, and concentrations are tightly controlled by thermodynamic limits of consumption and production. However, recent studies reported unusual H2 accumulation in permeable marine sediments under anoxic conditions, suggesting decoupling of fermentation and sulfate reduction, the dominant respiratory process in anoxic permeable marine sediments. Yet, the extent, prevalence and potential triggers for such H2 accumulation and decoupling remain unknown. We surveyed H2 concentrations in situ at different settings of permeable sand and found that H2 accumulation was only observed during a coral spawning event on the Great Barrier Reef. A flume experiment with organic matter addition to the water column showed a rapid accumulation of hydrogen within the sediment. Laboratory experiments were used to explore the effect of oxygen exposure, physical disturbance and organic matter inputs on H2 accumulation. Oxygen exposure had little effect on H2 accumulation in permeable sediments suggesting both fermenters and sulfate reducers survive and rapidly resume activity after exposure to oxygen. Mild physical disturbance mimicking sediment resuspension had little effect on H2 accumulation; however, vigorous shaking led to a transient accumulation of H2 and release of dissolved organic carbon suggesting mechanical disturbance and cell destruction led to organic matter release and transient decoupling of fermenters and sulfate reducers. In summary, the highly dynamic nature of permeable sediments and its microbial community allows for rapid but transient decoupling of fermentation and respiration after a C pulse, leading to high H2 levels in the sediment.

5.
Sci Total Environ ; 831: 154911, 2022 Jul 20.
Article En | MEDLINE | ID: mdl-35364143

Stormwater biofiltration systems (also known as biofilters, bioretention, rain gardens) are engineered nature-based solutions, which help mitigate aquatic nitrogen pollution arising from storm runoff. These systems are being increasingly used in a range of climates across the world. A decline in treatment performance is frequently observed in cold weather conditions. While plant species comprise an important design factor influencing system performance, the effect of temperature on the fate of dissolved nitrogen forms, namely ammonium (NH4+) and nitrate (NO3-), in the presence of different plant species in these systems remains unclear. A large scale laboratory experiment was undertaken that measured potential rates of nitrification, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) as well as the microbial community structure to investigate nitrogen fate and hence removal under two different temperature conditions (2 °C and 15 °C) in the presence of four distinct plant species. The results indicate that lower nitrification rates (reduced by a factor of 4) coupled with potential media NH4+ desorption could be contributing to reduced NH4+ removal during cold conditions. Planting with species exhibiting good nutrient uptake capacity can reduce the extent of this performance decline. While NO3- reduction generally remains problematic during cold weather (<0 to 55% reduction), which may not be significantly different from warmer periods, the study demonstrated that the denitrification potential and gene abundance (nap, nar, NirS, norB, nosZ) to be higher than those of nitrification (amoA). Denitrification may not proceeding at optimal rates due to lack of conducive environmental conditions. Nitrogen transformation via DNRA was found to be relatively insignificant. Future studies should investigate the potential of employing cold-resilient plant species to maintain both NH4+ and NO3- removal in cold weather conditions.


Ammonium Compounds , Denitrification , Nitrates , Nitrogen , Nitrogen Oxides , Plants , Temperature
6.
ISME J ; 16(3): 750-763, 2022 03.
Article En | MEDLINE | ID: mdl-34584214

The microbial community composition and biogeochemical dynamics of coastal permeable (sand) sediments differs from cohesive (mud) sediments. Tide- and wave-driven hydrodynamic disturbance causes spatiotemporal variations in oxygen levels, which select for microbial generalists and disrupt redox cascades. In this work, we profiled microbial communities and biogeochemical dynamics in sediment profiles from three sites varying in their exposure to hydrodynamic disturbance. Strong variations in sediment geochemistry, biogeochemical activities, and microbial abundance, composition, and capabilities were observed between the sites. Most of these variations, except for microbial abundance and diversity, significantly correlated with the relative disturbance level of each sample. In line with previous findings, metabolically flexible habitat generalists (e.g., Flavobacteriaceae, Woeseaiceae, Rhodobacteraceae) dominated in all samples. However, we present evidence that aerobic specialists such as ammonia-oxidizing archaea (Nitrosopumilaceae) were more abundant and active in more disturbed samples, whereas bacteria capable of sulfate reduction (e.g., uncultured Desulfobacterales), dissimilatory nitrate reduction to ammonium (DNRA; e.g., Ignavibacteriaceae), and sulfide-dependent chemolithoautotrophy (e.g., Sulfurovaceae) were enriched and active in less disturbed samples. These findings are supported by insights from nine deeply sequenced metagenomes and 169 derived metagenome-assembled genomes. Altogether, these findings suggest that hydrodynamic disturbance is a critical factor controlling microbial community assembly and biogeochemical processes in coastal sediments. Moreover, they strengthen our understanding of the relationships between microbial composition and biogeochemical processes in these unique environments.


Archaea , Bacteria , Geologic Sediments , Microbiota , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Archaea/physiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Geologic Sediments/microbiology , Hydrodynamics
7.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article En | MEDLINE | ID: mdl-34285074

Organoheterotrophs are the dominant bacteria in most soils worldwide. While many of these bacteria can subsist on atmospheric hydrogen (H2), levels of this gas are generally insufficient to sustain hydrogenotrophic growth. In contrast, bacteria residing within soil-derived termite mounds are exposed to high fluxes of H2 due to fermentative production within termite guts. Here, we show through community, metagenomic, and biogeochemical profiling that termite emissions select for a community dominated by diverse hydrogenotrophic Actinobacteriota and Dormibacterota. Based on metagenomic short reads and derived genomes, uptake hydrogenase and chemosynthetic RuBisCO genes were significantly enriched in mounds compared to surrounding soils. In situ and ex situ measurements confirmed that high- and low-affinity H2-oxidizing bacteria were highly active in the mounds, such that they efficiently consumed all termite-derived H2 emissions and served as net sinks of atmospheric H2 Concordant findings were observed across the mounds of three different Australian termite species, with termite activity strongly predicting H2 oxidation rates (R2 = 0.82). Cell-specific power calculations confirmed the potential for hydrogenotrophic growth in the mounds with most termite activity. In contrast, while methane is produced at similar rates to H2 by termites, mounds contained few methanotrophs and were net sources of methane. Altogether, these findings provide further evidence of a highly responsive terrestrial sink for H2 but not methane and suggest H2 availability shapes composition and activity of microbial communities. They also reveal a unique arthropod-bacteria interaction dependent on H2 transfer between host-associated and free-living microbial communities.


Bacteria/metabolism , Gases/metabolism , Isoptera/microbiology , Microbiota , Animals , Australia , Hydrogen/metabolism , Oxygen Consumption , Soil Microbiology
8.
Nat Commun ; 12(1): 3996, 2021 06 28.
Article En | MEDLINE | ID: mdl-34183682

Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.


Bacterial Proteins/chemistry , Deltaproteobacteria/metabolism , Electric Conductivity , Electron Transport/physiology , Nickel/chemistry , Electricity
9.
ISME J ; 15(10): 2986-3004, 2021 10.
Article En | MEDLINE | ID: mdl-33941890

Ecological theory suggests that habitat disturbance differentially influences distributions of habitat generalist and specialist species. While well-established for macroorganisms, this theory has rarely been explored for microorganisms. Here we tested these principles in permeable (sandy) sediments, ecosystems with much spatiotemporal variation in resource availability and physicochemical conditions. Microbial community composition and function were profiled in intertidal and subtidal sediments using 16S rRNA gene amplicon sequencing and metagenomics, yielding 135 metagenome-assembled genomes. Community composition and metabolic traits modestly varied with sediment depth and sampling date. Several taxa were highly abundant and prevalent in all samples, including within the orders Woeseiales and Flavobacteriales, and classified as habitat generalists; genome reconstructions indicate these taxa are highly metabolically flexible facultative anaerobes and adapt to resource variability by using different electron donors and acceptors. In contrast, obligately anaerobic taxa such as sulfate reducers and candidate lineage MBNT15 were less abundant overall and only thrived in more stable deeper sediments. We substantiated these findings by measuring three metabolic processes in these sediments; whereas the habitat generalist-associated processes of sulfide oxidation and fermentation occurred rapidly at all depths, the specialist-associated process of sulfate reduction was restricted to deeper sediments. A manipulative experiment also confirmed habitat generalists outcompete specialist taxa during simulated habitat disturbance. Together, these findings show metabolically flexible habitat generalists become dominant in highly dynamic environments, whereas metabolically constrained specialists are restricted to narrower niches. Thus, an ecological theory describing distribution patterns for macroorganisms likely extends to microorganisms. Such findings have broad ecological and biogeochemical ramifications.


Ecosystem , Microbiota , Bacteria/genetics , Geologic Sediments , Metagenomics , RNA, Ribosomal, 16S/genetics
10.
Nat Microbiol ; 6(2): 246-256, 2021 02.
Article En | MEDLINE | ID: mdl-33398096

Soil microorganisms globally are thought to be sustained primarily by organic carbon sources. Certain bacteria also consume inorganic energy sources such as trace gases, but they are presumed to be rare community members, except within some oligotrophic soils. Here we combined metagenomic, biogeochemical and modelling approaches to determine how soil microbial communities meet energy and carbon needs. Analysis of 40 metagenomes and 757 derived genomes indicated that over 70% of soil bacterial taxa encode enzymes to consume inorganic energy sources. Bacteria from 19 phyla encoded enzymes to use the trace gases hydrogen and carbon monoxide as supplemental electron donors for aerobic respiration. In addition, we identified a fourth phylum (Gemmatimonadota) potentially capable of aerobic methanotrophy. Consistent with the metagenomic profiling, communities within soil profiles from diverse habitats rapidly oxidized hydrogen, carbon monoxide and to a lesser extent methane below atmospheric concentrations. Thermodynamic modelling indicated that the power generated by oxidation of these three gases is sufficient to meet the maintenance needs of the bacterial cells capable of consuming them. Diverse bacteria also encode enzymes to use trace gases as electron donors to support carbon fixation. Altogether, these findings indicate that trace gas oxidation confers a major selective advantage in soil ecosystems, where availability of preferred organic substrates limits microbial growth. The observation that inorganic energy sources may sustain most soil bacteria also has broad implications for understanding atmospheric chemistry and microbial biodiversity in a changing world.


Bacteria/enzymology , Carbon Monoxide/metabolism , Hydrogen/metabolism , Microbiota , Soil Microbiology , Soil , Bacteria/classification , Bacteria/genetics , Metagenomics , Oxidation-Reduction , Phylogeny
11.
Sci Total Environ ; 758: 143669, 2021 Mar 01.
Article En | MEDLINE | ID: mdl-33277015

Ongoing land-use intensification in subtropical catchments is expected to release more inorganic nitrogen to downstream coastal waters similar to historical changes in temperate ecosystems. Here, we examined spatial and temporal drivers of stream nitrogen loads across a subtropical land-use gradient using the isotopic compositions of nitrate (NO3--N) and radon (222Rn), a natural groundwater tracer. We investigated eleven subtropical creeks/rivers over contrasting hydrological conditions in Australia. NOx-N (nitrite (NO2--N) + nitrate (NO3--N)) accounted for 13.1%, 34.0%, and 42.6% of total dissolved nitrogen (TDN-N) in forest, peri-urban and agricultural creeks, respectively. Following an 80 mm rain event, loads of dissolved inorganic nitrogen (DIN-N) from agriculture catchments reached 368 mg N m-2 catchment area day-1. Forest and peri-urban catchments had aquatic TDN-N loads 17.8% and 31.1% of loads from agricultural catchments. Radon observations suggest that nitrogen and phosphorus loads were driven primarily by surface runoff rather than groundwater discharge. The δ15N-NO3- and δ18O-NO3- values in the agriculture, forest and peri-urban catchments indicate fertilisers and soil nitrogen as the main sources of NO3--N. However, one of the catchments (Double Crossing Creek) received a mixture of recirculated greywater and chemical nitrogen fertilisers. Isotopic signatures imply significant NO3--N losses via denitrification during dry conditions. Groundwater discharge played a minor role because regional aquifers were not contaminated by nitrogen. Overall, intensive agricultural land use and episodic rainfall events were the major spatial and temporal drivers of nitrogen loads.

12.
Front Microbiol ; 11: 1261, 2020.
Article En | MEDLINE | ID: mdl-32655525

Increasing nitrogen (N) loads present a threat to estuaries, which are among the most heavily populated and perturbed parts of the world. N removal is largely mediated by the sediment microbial process of denitrification, in direct competition to dissimilatory nitrate reduction to ammonium (DNRA), which recycles nitrate to ammonium. Molecular proxies for N pathways are increasingly measured and analyzed, a major question in microbial ecology, however, is whether these proxies can add predictive power around the fate of N. We analyzed the diversity and community composition of sediment nirS and nrfA genes in 11 temperate estuaries, covering four types of land use in Australia, and analyzed how these might be used to predict N removal. Our data suggest that sediment microbiomes play a central role in controlling the magnitude of the individual N removal rates in the 11 estuaries. Inclusion, however, of relative gene abundances of 16S, nirS, nrfA, including their ratios did not improve physicochemical measurement-based regression models to predict rates of denitrification or DNRA. Co-occurrence network analyses of nirS showed a greater modularity and a lower number of keystone OTUs in pristine sites compared to urban estuaries, suggesting a higher degree of niche partitioning in pristine estuaries. The distinctive differences between the urban and pristine network structures suggest that the nirS gene could be a likely gene candidate to understand the mechanisms by which these denitrifying communities form and respond to anthropogenic pressures.

13.
Nat Microbiol ; 4(6): 1014-1023, 2019 06.
Article En | MEDLINE | ID: mdl-30858573

Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments. A major question is, therefore, how these communities maintain metabolism during oxic-anoxic transitions. Here, we show that molecular hydrogen (H2) accumulates in silicate sand sediments due to decoupling of bacterial fermentation and respiration processes following anoxia. In situ measurements show that H2 is 250-fold supersaturated in the water column overlying these sediments and has an isotopic composition consistent with fermentative production. Genome-resolved shotgun metagenomic profiling suggests that the sands harbour diverse and specialized microbial communities with a high abundance of [NiFe]-hydrogenase genes. Hydrogenase profiles predict that H2 is primarily produced by facultatively fermentative bacteria, including the dominant gammaproteobacterial family Woeseiaceae, and can be consumed by aerobic respiratory bacteria. Flow-through reactor and slurry experiments consistently demonstrate that H2 is rapidly produced by fermentation following anoxia, immediately consumed by aerobic respiration following reaeration and consumed by sulfate reduction only during prolonged anoxia. Hydrogenotrophic sulfur, nitrate and nitrite reducers were also detected, although contrary to previous hypotheses there was limited capacity for microalgal fermentation. In combination, these experiments confirm that fermentation dominates anoxic carbon mineralization in these permeable sediments and, in contrast to the case in cohesive sediments, is largely uncoupled from anaerobic respiration. Frequent changes in oxygen availability in these sediments may have selected for metabolically flexible bacteria while excluding strict anaerobes.


Bacteria/genetics , Bacteria/metabolism , Fermentation , Geologic Sediments/microbiology , Hypoxia , Bacteria, Anaerobic/metabolism , Carbon Cycle , Gammaproteobacteria/metabolism , Hydrogen/metabolism , Hydrogenase/classification , Hydrogenase/genetics , Metagenomics , Microbiota , Nitrates/metabolism , Nitrites/metabolism , Oceans and Seas , Oxidation-Reduction , RNA, Ribosomal, 16S , Sulfates/metabolism
14.
Sci Total Environ ; 666: 608-617, 2019 May 20.
Article En | MEDLINE | ID: mdl-30807951

Denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) are two competing nitrate reduction pathways that remove or recycle nitrogen, respectively. However, factors controlling the partitioning between these two pathways are manifold and our understanding of these factors is critical for the management of N loads in constructed wetlands. An important factor that controls DNRA in an aquatic ecosystem is the electron donor, commonly organic carbon (OC) or alternatively ferrous iron and sulfide. In this study, we investigated the role of natural organic carbon (NOC) and acetate at different OC/NO3- ratios and ferrous iron on the partitioning between DNF and DNRA using the 15N-tracer method in slurries from four constructed stormwater urban wetlands in Melbourne, Australia. The carbon and nitrate experiments revealed that DNF dominated at all OC/NO3- ratios. The higher DNF and DNRA rates observed after the addition of NOC indicates that nitrate reduction was enhanced more by NOC than acetate. Moreover, addition of NOC in slurries stimulated DNRA more than DNF. Interestingly, slurries amended with Fe2+ showed that Fe2+ had significant control on the balance between DNF and DNRA. From two out of four wetlands, a significant increase in DNRA rates (p < .05) at the cost of DNF in the presence of available Fe2+ suggests DNRA is coupled to Fe2+ oxidation. Rates of DNRA increased 1.5-3.5 times in the Fe2+ treatment compared to the control. Overall, our study provides direct evidence that DNRA is linked to Fe2+ oxidation in some wetland sediments and highlights the role of Fe2+ in controlling the partitioning between removal (DNF) and recycling (DNRA) of bioavailable N in stormwater urban constructed wetlands. In our study we also measured anammox and found that it was always <0.05% of total nitrate reduction in these sediments.

15.
J Fish Biol ; 93(5): 931-941, 2018 Nov.
Article En | MEDLINE | ID: mdl-30246350

In this paper, we investigate the period of successful spawning for black bream Acanthopagrus butcheri, an obligate estuarine species in southern Australia that typically spawn in spring and early summer. However, back-calculated spawning dates of juveniles sampled in Gippsland Lakes, Victoria from February to May 2016 indicated that spawning was concentrated over a short period in the Austral mid-summer (January), with a second spawning in late summer and early autumn (late February-early March). Ichthyoplankton sampling in the tributary estuaries from October to early December collected substantial numbers of fish larvae, dominated by gobiids, eleotrids and retropinnids of freshwater origin, but no A. butcheri. The lack of A. butcheri larvae was consistent with the delayed successful spawning indicated by juvenile otolith data. Freshwater flows declined from late winter to summer, with consistent salinity stratification of the water column. Dissolved oxygen (DO) concentrations were generally very low below the halocline. These conditions may have delayed the upstream spawning migration of adults or may have been unsuitable for survival of eggs and newly-hatched larvae. Longer-term predictions for climate change in southern Victoria, including the Gippsland Lakes region, are for lower winter-spring freshwater flows, potentially benefiting the reproductive success of A. butcheri through high water-column stratification, but only if DO concentrations are not compromised by a lack of high winter flows needed to flush low DO water from the system.


Perciformes/physiology , Seasons , Sexual Behavior, Animal , Animals , Climate Change , Estuaries , Fresh Water , Larva/anatomy & histology , Larva/growth & development , Otolithic Membrane , Perciformes/anatomy & histology , Perciformes/growth & development , Reproduction , Salinity , South Australia , Time Factors , Water Movements
16.
PeerJ ; 6: e4378, 2018.
Article En | MEDLINE | ID: mdl-29473004

Many estuaries are becoming increasingly eutrophic from human activities within their catchments. Nutrient loads often are used to assess risk of eutrophication to estuaries, but such data are expensive and time consuming to obtain. We compared the percent of fertilized land within a catchment, dissolved inorganic nitrogen loads, catchment to estuary area ratio and flushing time as predictors of the proportion of macroalgae to total vegetation within 14 estuaries in south-eastern Australia. The percent of fertilized land within the catchment was the best predictor of the proportion of macroalgae within the estuaries studied. There was a transition to a dominance of macroalgae once the proportion of fertilized land in the catchment exceeded 24%, highlighting the sensitivity of estuaries to catchment land use.

17.
Environ Sci Technol ; 51(23): 13771-13778, 2017 Dec 05.
Article En | MEDLINE | ID: mdl-29116768

Estuaries are an important source of greenhouse gases to the atmosphere, but uncertainties remain in the flux rates and production pathways of greenhouse gases in these dynamic systems. This study performs simultaneous high resolution measurements of the three major greenhouse gases (carbon dioxide, methane, and nitrous oxide) as well as carbon stable isotope ratios of carbon dioxide and methane, above and below the pycnocline along a salt wedge estuary (Yarra River estuary, Australia). We identified distinct zones of elevated greenhouse gas concentrations. At the tip of salt wedge, average CO2 and N2O concentrations were approximately five and three times higher than in the saline mouth of the estuary. In anaerobic bottom waters, the natural tracer radon (222Rn) revealed that porewater exchange was the likely source of the highest methane concentrations (up to 1302 nM). Isotopic analysis of CH4 showed a dominance of acetoclastic production in fresh surface waters and hydrogenotrophic production occurring in the saline bottom waters. The atmospheric flux of methane (in CO2 equivalent units) was a major (35-53%) contributor of atmospheric radiative forcing from the estuary, while N2O contributed <2%. We hypothesize that the release of bottom water gases when stratification episodically breaks down will release large pulses of greenhouse gases to the atmosphere.


Estuaries , Greenhouse Gases , Australia , Carbon Dioxide , Greenhouse Effect , Methane , Nitrous Oxide , Radon , Spectrum Analysis
18.
Ecol Appl ; 27(6): 1852-1861, 2017 09.
Article En | MEDLINE | ID: mdl-28482116

One of the goals of urban ecology is to link community structure to ecosystem function in urban habitats. Pollution-tolerant wetland invertebrates have been shown to enhance greenhouse gas (GHG) flux in controlled laboratory experiments, suggesting that they may influence urban wetland roles as sources or sinks of GHG. However, it is unclear if their effects can be detected in highly variable conditions in a field setting. Here we use an extensive data set on carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) flux in sediment cores (n = 103) collected from 10 urban wetlands in Melbourne, Australia during summer and winter in order to test for invertebrate enhancement of GHG flux. We detected significant multiplicative enhancement effects of temperature, sediment carbon content, and invertebrate density on CH4 and CO2 flux. Each doubling in density of oligochaete worms or large benthic invertebrates (oligochaete worms and midge larvae) corresponded to ~42% and ~15% increases in average CH4 and CO2 flux, respectively. However, despite exceptionally high densities, invertebrates did not appear to enhance N2 O flux. This was likely due to fairly high organic carbon content in sediments (range 2.1-12.6%), and relatively low nitrate availability (median 1.96 µmol/L NO3- -N), which highlights the context-dependent nature of community structural effects on ecosystem function. The invertebrates enhancing GHG flux in this study are ubiquitous, and frequently dominate faunal communities in impaired aquatic ecosystems. Therefore, invertebrate effects on CO2 and CH4 flux may be common in wetlands impacted by urbanization, and urban wetlands may make greater contributions to the total GHG budgets of cities if the negative impacts of urbanization on wetlands are left unchecked.


Carbon Dioxide/metabolism , Greenhouse Gases/metabolism , Invertebrates/metabolism , Methane/metabolism , Nitrates/metabolism , Wetlands , Animals , Chironomidae/metabolism , Cities , Geologic Sediments/chemistry , Oligochaeta/metabolism , Population Density , Seasons , Victoria
19.
Environ Sci Technol ; 51(7): 3703-3713, 2017 04 04.
Article En | MEDLINE | ID: mdl-28272882

Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N2O) and methane (CH4) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH4 and N2O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N2O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N2O accounted for <1.5% of the incoming total nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N2O or CH4 in biofilter effluent appears relatively low.


Denitrification , Nitrogen , Methane , Nitrous Oxide , Water Purification
20.
Nat Geosci ; 10(1): 30-35, 2017 Jan.
Article En | MEDLINE | ID: mdl-28070216

Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to prokaryotes such as bacteria and archaea. Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H2 production rates, suggesting the presence of fermentation. The production of both dissolved inorganic carbon and H2 persisted following administration of broad spectrum bactericidal antibiotics, but ceased following treatment with metronidazole. Metronidazole inhibits the ferredoxin/hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae. Cell counts revealed a predominance of microalgae in the sediments. H2 production was observed in dark anoxic cultures of diatoms (Fragilariopsis sp.) and a chlorophyte (Pyramimonas) isolated from the study site, substantiating the hypothesis that microalgae undertake fermentation. We conclude that microalgal dark fermentation could be an important energy-conserving pathway in permeable sediments.

...