Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Work Expo Health ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785326

ABSTRACT

BACKGROUND: The public order and safety (POS) sector remains susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks, as workplace attendance is typically compulsory and close physical contact is often needed. Here, we report on a SARS-CoV-2 outbreak with an attack rate of 39% (9/23), which occurred between 19 and 29 June 2021 among a cohort of new POS recruits participating in a mandatory 18-week training programme in England. METHODS: The COVID-OUT (COVID-19 Outbreak investigation to Understand Transmission) study team undertook a multidisciplinary outbreak investigation, including viral surface sampling, workplace environmental assessment, participant viral and antibody testing, and questionnaires, at the two associated training facilities between 5 July and 24 August 2021. RESULTS: Environmental factors, such as ventilation, were deemed inadequate in some areas of the workplace, with carbon dioxide (CO2) levels exceeding 1,500 ppm on multiple occasions within naturally ventilated classrooms. Activities during safety training required close contact, with some necessitating physical contact, physical exertion, and shouting. Furthermore, most participants reported having physical contact with colleagues (67%) and more than one close work contact daily (97%). CONCLUSIONS: Our investigation suggests that site- and activity-specific factors likely contributed to the transmission risks within the POS trainee cohort. Potential interventions for mitigating SARS-CoV-2 transmission in this POS training context could include implementing regular rapid lateral flow testing, optimizing natural ventilation, using portable air cleaning devices in classrooms, and expanding use of well-fitted FFP2/FFP3 respirators during activities where prolonged close physical contact is required.

2.
BMC Public Health ; 23(1): 1077, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277762

ABSTRACT

BACKGROUND: A SARS-CoV-2 outbreak with an attack rate of 14.3% was reported at a plastics manufacturing plant in England. METHODS: Between 23rd March and 13th May 2021, the COVID-OUT team undertook a comprehensive outbreak investigation, including environmental assessment, surface sampling, molecular and serological testing, and detailed questionnaires, to identify potential SARS-CoV-2 transmission routes, and workplace- and worker-related risk factors. RESULTS: While ventilation, indicated using real-time CO2 proxy measures, was generally adequate on-site, the technical office with the highest localized attack rate (21.4%) frequently reached peaks in CO2 of 2100ppm. SARS-CoV-2 RNA was found in low levels (Ct ≥35) in surface samples collected across the site. High noise levels (79dB) were recorded in the main production area, and study participants reported having close work contacts (73.1%) and sharing tools (75.5%). Only 20.0% of participants reported using a surgical mask and/or FFP2/FFP3 respirator at least half the time and 71.0% expressed concerns regarding potential pay decreases and/or unemployment due to self-isolation or workplace closure. CONCLUSIONS: The findings reinforce the importance of enhanced infection control measures in manufacturing sectors, including improved ventilation with possible consideration of CO2 monitoring, utilising air cleaning interventions in enclosed environments, and provision of good-quality face masks (i.e., surgical masks or FFP2/FFP3 respirators) especially when social distancing cannot be maintained. Further research on the impacts of job security-related concerns is warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Plastics , RNA, Viral , Carbon Dioxide , Disease Outbreaks , Manufacturing and Industrial Facilities
3.
Article in English | MEDLINE | ID: mdl-35681985

ABSTRACT

Workplace-related outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to occur globally. The manufacturing sector presents a particular concern for outbreaks, and a better understanding of transmission risks are needed. Between 9 March and 24 April 2021, the COVID-19 (coronavirus disease 2019) Outbreak Investigation to Understand Transmission (COVID-OUT) study undertook a comprehensive investigation of a SARS-CoV-2 outbreak at an automotive manufacturing site in England. The site had a total of 266 workers, and 51 SARS-CoV-2 infections. Overall, ventilation, humidity, and temperature at the site were assessed to be appropriate for the number of workers and the work being conducted. The company had implemented a number of infection control procedures, including provision of face coverings, spacing in the work, and welfare areas to allow for social distancing. However, observations of worker practices identified lapses in social distancing, although all were wearing face coverings. A total of 38 workers, including four confirmed cases, participated in the COVID-OUT study. The majority of participants received COVID-19 prevention training, though 42.9% also reported that their work required close physical contact with co-workers. Additionally, 73.7% and 34.2% had concerns regarding reductions in future income and future unemployment, respectively, due to self-isolation. This investigation adds to the growing body of evidence of SARS-CoV-2 outbreaks from the manufacturing sector. Despite a layered COVID-19 control strategy at this site, cases clustered in areas of high occupancy and close worker proximity.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Disease Outbreaks , Humans , Infection Control/methods , Workplace
4.
Ann Work Expo Health ; 61(3): 383-393, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28355438

ABSTRACT

Biological monitoring to assess exposure to diisocyanates in the workplace is becoming increasingly widespread due to its relative ease of use and ability to look at all exposure routes. Currently, biological monitoring measures the corresponding isocyanate-derived diamine in urine, after hydrolysis. Because of this, any exposure to the diamines themselves released during the industrial process could confound the assessment of diisocyanate exposure. This paper reports an initial assessment of the extent of diamine formation and exposure during different processes involving diisocyanates including casting, grouting, core making, spray painting, foam blowing, and floor screeding. Air monitoring and glove analysis were conducted for both the relevant diisocyanate (measured as total NCO) and its corresponding diamine; urine samples were analysed (after hydrolysis) for the isocyanate-derived diamine. Processes that generated aerosols (as demonstrated by impinger analysis) such as spray painting and foam blowing were associated with the detection of diamines. Those processes that did not generate aerosols (casting, grouting, core making, and screeding) had no diamines detected, either in air or on gloves. In spray-painting tasks, diamines were a minor component (<15%) of the ambient concentration whereas in the foam blowing processes, where water is added to the process, diamine generation is more marked (up to eight times the airborne NCO concentration). Some non-aerosol processes gave rise to substantial diamine levels in urine (in exceedance of international guidance values, >5 µmol mol-1 creatinine) despite airborne levels being well within occupational exposure limits (20 µg m-3 total NCO in Great Britain); measurement data and statistical modelling indicated that skin absorption was the most likely exposure route. Foam blowing exposures were more complex, but urinary levels were greater than those expected from diisocyanate inhalation alone (measured as total NCO). This study provides evidence that biological monitoring for diisocyanates based on measuring the corresponding diamine in urine is valid, although any co-exposure to diamines themselves should be considered when interpreting results. It also demonstrates the potential for substantial skin absorption of diisocyanates in certain processes such as floor screeding and foam production.


Subject(s)
Diamines/urine , Environmental Monitoring/methods , Isocyanates/analysis , Occupational Exposure/analysis , Workplace/standards , Aerosols/analysis , Air Pollutants, Occupational/analysis , Humans , Industry/statistics & numerical data , Inhalation Exposure/analysis , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...