Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 21(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37623731

ABSTRACT

The production of biomolecules by microalgae has a wide range of applications in the development of various materials and products, such as biodiesel, food supplements, and cosmetics. Microalgae biomass can be produced using waste and in a smaller space than other types of crops (e.g., soja, corn), which shows microalgae's great potential as a source of biomass. Among the produced biomolecules of greatest interest are carbohydrates, proteins, lipids, and fatty acids. In this study, the production of these biomolecules was determined in two strains of microalgae (Chlamydomonas reinhardtii and Chlorella vulgaris) when exposed to different concentrations of nitrogen, phosphorus, and sulfur. Results show a significant microalgal growth (3.69 g L-1) and carbohydrates (163 mg g-1) increase in C. reinhardtii under low nitrogen concentration. Also, higher lipids content was produced under low sulfur concentration (246 mg g-1). It was observed that sulfur variation could affect in a negative way proteins production in C. reinhardtii culture. In the case of C. vulgaris, a higher biomass production was obtained in the standard culture medium (1.37 g L-1), and under a low-phosphorus condition, C. vulgaris produced a higher lipids concentration (248 mg g-1). It was observed that a low concentration of nitrogen had a better effect on the accumulation of fatty acid methyl esters (FAMEs) (C16-C18) in both microalgae. These results lead us to visualize the effects that the variation in macronutrients can have on the growth of microalgae and their possible utility for the production of microalgae-based subproducts.


Subject(s)
Chlamydomonas reinhardtii , Chlorella vulgaris , Microalgae , Biomass , Fatty Acids , Nitrogen , Phosphorus , Esters
2.
MethodsX ; 10: 102160, 2023.
Article in English | MEDLINE | ID: mdl-37095869

ABSTRACT

Emerging pollutants (EPs) are a group of different contaminants, such as hormones, pesticides, heavy metals, and drugs, usually found in concentrations between the order of ng and µg per liter. The global population's daily city and agro-industrial activities release EPs into the environment.  Due to the chemical nature of EPs and deficient wastewater treatment and management, they are transported to superficial and groundwater through the natural water cycle, where they can potentially cause harmful effects on living organisms. Recent efforts have focused on developing technology that allows EPs quantification and monitoring in real-time and in situ. The newly developed technology aims to provide accessible groundwater management that detects and treats EPs while avoiding their contact with living beings and their toxic effects. This review presents some of the recently reported techniques that have been applied to advance the detection of EPs in groundwater and potential technologies that can be used for EP removal.

3.
Mar Drugs ; 21(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36827134

ABSTRACT

Due to the constant growth of the human population and anthropological activity, it has become necessary to use sustainable and affordable technologies that satisfy the current and future demand for agricultural products. Since the nutrients available to plants in the soil are limited and the need to increase the yields of the crops is desirable, the use of chemical (inorganic or NPK) fertilizers has been widespread over the last decades, causing a nutrient shortage due to their misuse and exploitation, and because of the uncontrolled use of these products, there has been a latent environmental and health problem globally. For this reason, green biotechnology based on the use of microalgae biomass is proposed as a sustainable alternative for development and use as soil improvers for crop cultivation and phytoremediation. This review explores the long-term risks of using chemical fertilizers for both human health (cancer and hypoxia) and the environment (eutrophication and erosion), as well as the potential of microalgae biomass to substitute current fertilizer using different treatments on the biomass and their application methods for the implementation on the soil; additionally, the biomass can be a source of carbon mitigation and wastewater treatment in agro-industrial processes.


Subject(s)
Microalgae , Soil , Humans , Fertilizers/analysis , Carbon Footprint , Carbon , Biotechnology , Biomass
4.
Sci Total Environ ; 857(Pt 2): 159351, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36243065

ABSTRACT

Z-drugs, benzodiazepines and ketamine are classes of psychotropic drugs prescribed for treating anxiety, sleep disorders and depression with known side effects including an elevated risk of addiction and substance misuse. These drugs have a strong potential for misuse, which has escalated over the years and was hypothesized here to have been exacerbated during the COVID-19 pandemic. Wastewater-based epidemiology (WBE) constitutes a fast, easy, and relatively inexpensive approach to epidemiological surveys for understanding the incidence and frequency of uses of these drugs. In this study, we analyzed wastewater (n = 376) from 50 cities across the United States and Mexico from July to October 2020 to estimate drug use rates during a pandemic event. Both time and flow proportional composite and grab samples of untreated municipal wastewater were analyzed using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry to determine loadings of alprazolam, clonazepam, diazepam, ketamine, lorazepam, nordiazepam, temazepam, zolpidem, and zaleplon in raw wastewater. Simultaneously, prescription data of the aforementioned drugs were extracted from the Medicaid database from 2019 to 2021. Results showed high detection frequencies of ketamine (90 %), lorazepam (87 %), clonazepam (76 %) and temazepam (73 %) across both Mexico and United States and comparatively lower detection frequencies for zaleplon (22 %), zolpidem (9 %), nordiazepam (<1 %), diazepam (<1 %), and alprazolam (<1 %) during the pandemic. Average mass consumption rates, estimated using WBE and reported in units of mg/day/1000 persons, ranged between 62 (temazepam) and 1100 (clonazepam) in the United States. Results obtained from the Medicaid database also showed a significant change (p < 0.05) in the prescription volume between the first quarter of 2019 (before the pandemic) and the first quarter of 2021 (pandemic event) for alprazolam, clonazepam and lorazepam. Study results include the first detections of zaleplon and zolpidem in wastewater from North America.


Subject(s)
COVID-19 , Ketamine , Humans , United States/epidemiology , Benzodiazepines , Alprazolam/analysis , Wastewater/analysis , Pandemics , Nordazepam/analysis , Zolpidem/analysis , Clonazepam/analysis , Lorazepam/analysis , Tandem Mass Spectrometry/methods , COVID-19/epidemiology , Temazepam/analysis , Mexico/epidemiology , Diazepam
5.
ACS Omega ; 7(37): 32863-32876, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36157779

ABSTRACT

The synergistic interaction between advanced biotechnology and nanotechnology has allowed the development of innovative nanomaterials. Those nanomaterials can conveniently act as supports for enzymes to be employed as nanobiocatalysts and nanosensing constructs. These systems generate a great capacity to improve the biocatalytic potential of enzymes by improving their stability, efficiency, and product yield, as well as facilitating their purification and reuse for various bioprocessing operating cycles. The different specific physicochemical characteristics and the supramolecular nature of the nanocarriers obtained from different economical and abundant sources have allowed the continuous development of functional nanostructures for different industries such as food and agriculture. The remarkable biotechnological potential of nanobiocatalysts and nanosensors has generated applied research and use in different areas such as biofuels, medical diagnosis, medical therapies, environmental bioremediation, and the food industry. The objective of this work is to present the different manufacturing strategies of nanomaterials with various advantages in biocatalysis and nanosensing of various compounds in the industry, providing great benefits to society and the environment.

6.
Molecules ; 27(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36144740

ABSTRACT

The photolyase family consists of flavoproteins with enzyme activity able to repair ultraviolet light radiation damage by photoreactivation. DNA damage by the formation of a cyclobutane pyrimidine dimer (CPD) and a pyrimidine-pyrimidone (6-4) photoproduct can lead to multiple affections such as cellular apoptosis and mutagenesis that can evolve into skin cancer. The development of integrated applications to prevent the negative effects of prolonged sunlight exposure, usually during outdoor activities, is imperative. This study presents the functions, characteristics, and types of photolyases, their therapeutic and cosmetic applications, and additionally explores some photolyase-producing microorganisms and drug delivery systems.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , DNA Repair , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Flavoproteins , Pyrimidine Dimers , Pyrimidines , Pyrimidinones , Ultraviolet Rays/adverse effects
7.
Molecules ; 27(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35684447

ABSTRACT

Microalgae are complex photosynthetic organisms found in marine and freshwater environments that produce valuable metabolites. Microalgae-derived metabolites have gained remarkable attention in different industrial biotechnological processes and pharmaceutical and cosmetic industries due to their multiple properties, including antioxidant, anti-aging, anti-cancer, phycoimmunomodulatory, anti-inflammatory, and antimicrobial activities. These properties are recognized as promising components for state-of-the-art cosmetics and cosmeceutical formulations. Efforts are being made to develop natural, non-toxic, and environmentally friendly products that replace synthetic products. This review summarizes some potential cosmeceutical applications of microalgae-derived biomolecules, their mechanisms of action, and extraction methods.


Subject(s)
Biological Products , Cosmeceuticals , Cosmetics , Microalgae , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Biological Products/metabolism , Biological Products/pharmacology , Biotechnology , Cosmeceuticals/pharmacology , Cosmetics/metabolism , Microalgae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...