Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
J Med Chem ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115891

ABSTRACT

Extracellular vesicles (EVs) can transfer antigens and immunomodulatory molecules, and such EVs released by antigen-presenting cells equipped with immunostimulatory functions have been utilized for vaccine formulations. A prior high-throughput screening campaign led to the identification of compound 634 (1), which enhanced EV release and increased intracellular Ca2+ influx. Here, we performed systematic structure-activity relationship (SAR) studies to investigate the scaffold for its potency as a vaccine adjuvant. Synthesized compounds were analyzed in vitro for CD63 reporter activity (a marker for EV biogenesis) in human THP-1 cells, induction of Ca2+ influx, IL-12 production, and cell viability in murine bone-marrow-derived dendritic cells. The SAR studies indicated that the ester functional group was requisite, and the sulfur atom of the benzothiadiazole ring replaced with a higher selenium atom (9f) or a bioisosteric ethenyl group (9h) retained potency. Proof-of-concept vaccination studies validated the potency of the selected compounds as novel vaccine adjuvants.

2.
Osteoporos Int ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965121

ABSTRACT

Our study examined associations of the CXC motif chemokine ligand 9 (CXCL9), a pro-inflammatory protein implicated in age-related inflammation, with musculoskeletal function in elderly men. We found in certain outcomes both cross-sectional and longitudinal significant associations of CXCL9 with poorer musculoskeletal function and increased mortality in older men. This requires further investigation. PURPOSE: We aim to determine the relationship of (CXCL9), a pro-inflammatory protein implicated in age-related inflammation, with both cross-sectional and longitudinal musculoskeletal outcomes and mortality in older men. METHODS: A random sample from the Osteoporotic Fractures in Men (MrOS) Study cohort (N = 300) was chosen for study subjects that had attended the third and fourth clinic visits, and data was available for major musculoskeletal outcomes (6 m walking speed, chair stands), hip bone mineral density (BMD), major osteoporotic fracture, mortality, and serum inflammatory markers. Serum levels of CXCL9 were measured by ELISA, and the associations with musculoskeletal outcomes were assessed by linear regression and fractures and mortality with Cox proportional hazards models. RESULTS: The mean CXCL9 level of study participants (79.1 ± 5.3 years) was 196.9 ± 135.2 pg/ml. There were significant differences for 6 m walking speed, chair stands, physical activity scores, and history of falls in the past year across the quartiles of CXCL9. However, higher CXCL9 was only significantly associated with changes in chair stands (ß = - 1.098, p < 0.001) even after adjustment for multiple covariates. No significant associations were observed between CXCL9 and major osteoporotic fracture or hip BMD changes. The risk of mortality increased with increasing CXCL9 (hazard ratio quartile (Q)4 vs Q1 1.98, 95% confidence interval 1.25-3.14; p for trend < 0.001). CONCLUSIONS: Greater serum levels of CXCL9 were significantly associated with a decline in chair stands and increased mortality. Additional studies with a larger sample size are needed to confirm our findings.

3.
iScience ; 27(4): 109457, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38558931

ABSTRACT

Helicobacter pylori (H. pylori) infection is a known cause of many digestive diseases, including gastritis, peptic ulcers, and gastric cancer. However, the underlying mechanisms by which H. pylori infection triggers these disorders are still not clearly understood. Gastric cancer is a slow progressing disease, which makes it difficult to study. We have developed an accelerated disease progression mouse model, which leverages mice deficient in the myeloid differentiation primary response 88 gene (Myd88-/-) infected with Helicobacter felis (H. felis). Using this model and gastric biopsy samples from patients, we report that activation of the Toll/interleukin-1 receptor (TIR)-domain-containing adaptor inducing interferon-ß (TRIF)-type I interferon (IFN-I) signaling pathway promotes Helicobacter-induced disease progression toward severe gastric pathology and gastric cancer development. Further, results implicated downstream targets of this pathway in disease pathogenesis. These findings may facilitate stratification of Helicobacter-infected patients and thus enable treatment prioritization of patients.

4.
bioRxiv ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37333238

ABSTRACT

Helicobacter pylori ( H. pylori) infection is an established cause of many digestive diseases, including gastritis, peptic ulcers, and gastric cancer. However, the mechanism by which infection with H. pylori causes these disorders is still not clearly understood. This is due to insufficient knowledge of pathways that promote H. pylori -induced disease progression. We have established a Helicobacter -induced accelerated disease progression mouse model, which involves infecting mice deficient in the myeloid differentiation primary response 88 gene ( Myd88 -/- ) with H. felis . Using this model, we report here that that progression of H. felis -induced inflammation to high-grade dysplasia was associated with activation of type I interferon (IFN-I) signaling pathway and upregulation of related downstream target genes, IFN-stimulated genes (ISGs). These observations were further corroborated by the enrichment of ISRE motifs in the promoters of upregulated genes. Further we showed that H. felis -induced inflammation in mice deficient in Toll/interleukin-1 receptor (TIR)-domain-containing adaptor inducing interferon-ß (TRIF, Trif Lps 2 ) did not progress to severe gastric pathology, indicating a role of the TRIF signaling pathway in disease pathogenesis and progression. Indeed, survival analysis in gastric biopsy samples from gastric cancer patients illustrated that high expression of Trif was significantly associated with poor survival in gastric cancer.

5.
Diabetes ; 72(9): 1235-1250, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37257047

ABSTRACT

In obesity, CD11c+ innate immune cells are recruited to adipose tissue and create an inflammatory state that causes both insulin and catecholamine resistance. We found that ablation of Gnas, the gene that encodes Gαs, in CD11c expressing cells protects mice from obesity, glucose intolerance, and insulin resistance. Transplantation studies showed that the lean phenotype was conferred by bone marrow-derived cells and did not require adaptive immunity. Loss of cAMP signaling was associated with increased adipose tissue norepinephrine and cAMP signaling, and prevention of catecholamine resistance. The adipose tissue had reduced expression of catecholamine transport and degradation enzymes, suggesting that the elevated norepinephrine resulted from decreased catabolism. Collectively, our results identified an important role for cAMP signaling in CD11c+ innate immune cells in whole-body metabolism by controlling norepinephrine levels in white adipose tissue, modulating catecholamine-induced lipolysis and increasing thermogenesis, which, together, created a lean phenotype. ARTICLE HIGHLIGHTS: We undertook this study to understand how immune cells communicate with adipocytes, specifically, whether cAMP signaling in the immune cell and the adipocyte are connected. We identified a reciprocal interaction between CD11c+ innate immune cells and adipocytes in which high cAMP signaling in the immune cell compartment induces low cAMP signaling in adipocytes and vice versa. This interaction regulates lipolysis in adipocytes and inflammation in immune cells, resulting in either a lean, obesity-resistant, and insulin-sensitive phenotype, or an obese, insulin-resistant phenotype.


Subject(s)
Diet, High-Fat , Insulin Resistance , Obesity , Animals , Mice , Adipose Tissue, White/metabolism , Catecholamines/metabolism , Diet, High-Fat/adverse effects , Insulin/metabolism , Insulin Resistance/physiology , Mice, Inbred C57BL , Norepinephrine/metabolism , Obesity/etiology , Obesity/metabolism
6.
J Exp Clin Cancer Res ; 42(1): 26, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36670473

ABSTRACT

BACKGROUND: Individuals with certain chronic inflammatory lung diseases have a higher risk of developing lung cancer (LC). However, the underlying mechanisms remain largely unknown. Here, we hypothesized that chronic exposure to house dust mites (HDM), a common indoor aeroallergen associated with the development of asthma, accelerates LC development through the induction of chronic lung inflammation (CLI).  METHODS: The effects of HDM and heat-inactivated HDM (HI-HDM) extracts were evaluated in two preclinical mouse models of LC (a chemically-induced model using the carcinogen urethane and a genetically-driven model with oncogenic KrasG12D activation in lung epithelial cells) and on murine macrophages in vitro. Pharmacological blockade or genetic deletion of the Nod-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, caspase-1, interleukin-1ß (IL-1ß), and C-C motif chemokine ligand 2 (CCL2) or treatment with an inhaled corticosteroid (ICS) was used to uncover the pro-tumorigenic effect of HDM.  RESULTS: Chronic intranasal (i.n) instillation of HDM accelerated LC development in the two mouse models. Mechanistically, HDM caused a particular subtype of CLI, in which the NLRP3/IL-1ß signaling pathway is chronically activated in macrophages, and made the lung microenvironment conducive to tumor development. The tumor-promoting effect of HDM was significantly decreased by heat treatment of the HDM extract and was inhibited by NLRP3, IL-1ß, and CCL2 neutralization, or ICS treatment. CONCLUSIONS: Collectively, these data indicate that long-term exposure to HDM can accelerate lung tumorigenesis in susceptible hosts (e.g., mice and potentially humans exposed to lung carcinogens or genetically predisposed to develop LC).


Subject(s)
Asthma , Lung Neoplasms , Humans , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroglyphidae , Lung/pathology , Asthma/metabolism , Asthma/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/metabolism , Disease Models, Animal , Tumor Microenvironment
7.
Front Pain Res (Lausanne) ; 3: 1018800, 2022.
Article in English | MEDLINE | ID: mdl-36387416

ABSTRACT

Millions of people suffer from arthritis worldwide, consistently struggling with daily activities due to debilitating pain evoked by this disease. Perhaps the most intensively investigated type of inflammatory arthritis is rheumatoid arthritis (RA), where, despite considerable advances in research and clinical management, gaps regarding the neuroimmune interactions that guide inflammation and chronic pain in this disease remain to be clarified. The pain and inflammation associated with arthritis are not isolated to the joints, and inflammatory mechanisms induced by different immune and glial cells in other tissues may affect the development of chronic pain that results from the disease. This review aims to provide an overview of the state-of-the-art research on the roles that innate immune, and glial cells play in the onset and maintenance of arthritis-associated pain, reviewing nociceptive pathways from the joint through the dorsal root ganglion, spinal circuits, and different structures in the brain. We will focus on the cellular mechanisms related to neuroinflammation and pain, and treatments targeting these mechanisms from the periphery and the CNS. A comprehensive understanding of the role these cells play in peripheral inflammation and initiation of pain and the central pathways in the spinal cord and brain will facilitate identifying new targets and pathways to aide in developing therapeutic strategies to treat joint pain associated with RA.

8.
Front Pharmacol ; 13: 869649, 2022.
Article in English | MEDLINE | ID: mdl-35479316

ABSTRACT

Extracellular vesicles (EVs) play an important role in intercellular communication and regulation of cells, especially in the immune system where EVs can participate in antigen presentation and may have adjuvant effects. We aimed to identify small molecule compounds that can increase EV release and thereby enhance the immunogenicity of vaccines. We utilized a THP-1 reporter cell line engineered to release EV-associated tetraspanin (CD63)-Turbo-luciferase to quantitatively measure EVs released in culture supernatants as a readout of a high throughput screen (HTS) of 27,895 compounds. In parallel, the cytotoxicity of the compounds was evaluated by PrestoBlue dye assay. For screening immunostimulatory potency, we performed two additional independent HTS on the same compound library using NF-κB and interferon-stimulated response element THP-1 reporter cell lines. Hit compounds were then identified in each of the 3 HTS's, using a "Top X″ and a Gaussian Mixture Model approach to rule out false positive compounds and to increase the sensitivity of the hit selection. Thus, 644 compounds were selected as hits which were further evaluated for induction of IL-12 in murine bone-marrow derived dendritic cells (mBMDCs) and for effects of cell viability. The resulting 130 hits were then assessed from a medicinal chemistry perspective to remove compounds with functional group liabilities. Finally, 80 compounds were evaluated as vaccine adjuvants in vivo using ovalbumin as a model antigen. We analyzed 18 compounds with adjuvant activity for their ability to induce the expression of co-stimulatory molecules on mBMDCs. The full complement of data was then used to cluster the compounds into 4 distinct biological activity profiles. These compounds were also evaluated for quantitation of EV release and spider plot overlays were generated to compare the activity profiles of compounds within each cluster. This tiered screening process identified two compounds that belong to the 4-thieno-2-thiopyrimidine scaffold with identical screening profiles supporting data reproducibility and validating the overall screening process. Correlation patterns in the adjuvanticity data suggested a role for CD63 and NF-κB pathways in potentiating antigen-specific antibody production. Thus, our three independent cell-based HTS campaigns led to identification of immunostimulatory compounds that release EVs and have adjuvant activity.

9.
J Neurosci Methods ; 371: 109497, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35181343

ABSTRACT

BACKGROUND: The dorsal root ganglion (DRG) is structurally complex and pivotal to systems processing nociception. Whole mount analysis allows examination of intricate microarchitectural and cellular relationships of the DRG in three-dimensional (3D) space. NEW METHOD: We present DRGquant a set of tools and techniques optimized as a pipeline for automated image analysis and reconstruction of cells/structures within the DRG. We have developed an open source software pipeline that utilizes machine learning to identify substructures within the DRG and reliably classify and quantify them. RESULTS: Our methods were sufficiently sensitive to isolate, analyze, and classify individual DRG substructures including macrophages. The activation of macrophages was visualized and quantified in the DRG following intrathecal injection of lipopolysaccharide, and in a model of chemotherapy induced peripheral neuropathy. The percent volume of infiltrating macrophages was similar to a commercial source in quantification. Circulating fluorescent dextran was visualized within DRG macrophages using whole mount preparations, which enabled 3D reconstruction of the DRG and DRGquant demonstrated subcellular spatial resolution within individual macrophages. COMPARISON WITH EXISTING METHOD(S): Here we describe a reliable and efficient methodologic pipeline to prepare cleared and whole mount DRG tissue. DRGquant allows automated image analysis without tedious manual gating to reduce bias. The quantitation of DRG macrophages was superior to commercial solutions. CONCLUSIONS: Using machine learning to separate signal from noise and identify individual cells, DRGquant enabled us to isolate individual structures or areas of interest within the DRG for a more granular and fine-tuned analysis. Using these 3D techniques, we are better able to appreciate the biology of the DRG under experimental inflammatory conditions.


Subject(s)
Ganglia, Spinal , Macrophages , Image Processing, Computer-Assisted/methods , Lipopolysaccharides , Machine Learning
10.
ACS Chem Biol ; 17(1): 217-229, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34985883

ABSTRACT

There remains an unmet need for reliable fully synthetic adjuvants that increase lasting protective immune responses from vaccines. We previously reported a high-throughput screening for small molecules that extended nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) activation after a Toll-like receptor 4 (TLR4) ligand, lipopolysaccharide (LPS), stimulation using a human myeloid reporter cell line. We identified compounds with a conserved aminothiazole scaffold including 2D216 [N-(4-(2,5-dimethylphenyl)thiazol-2-yl)-4-(piperidin-1-ylsulfonyl)benzamide], which increased murine antigen-specific antibody responses when used as a co-adjuvant with LPS. Here, we examined the mechanism of action in human cells. Although 2D216 activated the major mitogen-activated protein kinases, it did not interact with common kinases and phosphatases and did not stimulate many of the pattern recognition receptors (PRRs). Instead, the mechanism of action was linked to intracellular Ca2+ elevation via Ca2+ channel(s) at the plasma membrane and nuclear translocation of the nuclear factor of activated T-cells (NFAT) as supported by RNA-seq data, analysis by reporter cells, Ca2+ flux assays, and immunoblots. Interestingly, 2D216 had minimal, if any, activity on Jurkat T cells but induced cytokine production and surface expression of costimulatory molecules on cells with antigen-presenting functions. A small series of analogs of 2D216 were tested for the ability to enhance a TLR4 ligand-stimulated autologous mixed lymphocyte reaction (MLR). In the MLR, 2E151, N-(4-(2,5-dimethylphenyl)thiazol-2-yl)-4-((4-propylpiperidin-1-yl)sulfonyl)benzamide, was more potent than 2D216. These results indicate that a small molecule that is not a direct PRR agonist can act as a co-adjuvant to an approved adjuvant to enhance human immune responses via a complementary mechanism of action.


Subject(s)
Adjuvants, Immunologic , Calcium Channel Agonists , Animals , Humans , Mice , Adjuvants, Immunologic/pharmacology , Calcium Channel Agonists/pharmacology , Cell Line , Cell Proliferation/drug effects , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , Lymphocytes/drug effects , Ovalbumin/immunology , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism
11.
Front Immunol ; 12: 701445, 2021.
Article in English | MEDLINE | ID: mdl-34650551

ABSTRACT

As viruses continue to mutate the need for rapid high titer neutralizing antibody responses has been highlighted. To meet these emerging threats, agents that enhance vaccine adjuvant activity are needed that are safe with minimal local or systemic side effects. To respond to this demand, we sought small molecules that would sustain and improve the protective effect of a currently approved adjuvant, monophosphoryl lipid A (MPLA), a Toll-like receptor 4 (TLR4) agonist. A lead molecule from a high-throughput screen, (N-(4-(2,5-dimethylphenyl)thiazol-2-yl)-4-(piperidin-1-ylsulfonyl)benzamide, was identified as a hit compound that sustained NF-κB activation by a TLR4 ligand, lipopolysaccharide (LPS), after an extended incubation (16 h). In vitro, the resynthesized compound (2D216) enhanced TLR4 ligand-induced innate immune activation and antigen presenting function in primary murine bone marrow-derived dendritic cells without direct activation of T cells. In vivo murine vaccination studies demonstrated that compound 2D216 acted as a potent co-adjuvant when used in combination with MPLA that enhanced antigen-specific IgG equivalent to that of AS01B. The combination adjuvant MPLA/2D216 produced Th1 dominant immune responses and importantly protected mice from lethal influenza virus challenge. 2D216 alone or 2D216/MPLA demonstrated minimal local reactogenicity and no systemic inflammatory response. In summary, 2D216 augmented the beneficial protective immune responses of MPLA as a co-adjuvant and showed an excellent safety profile.


Subject(s)
Adjuvants, Immunologic/pharmacology , Influenza Vaccines/immunology , Influenza Vaccines/pharmacology , Lipid A/analogs & derivatives , Animals , Female , Influenza A virus , Lipid A/immunology , Lipid A/pharmacology , Male , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections
12.
Bioorg Med Chem ; 43: 116242, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34274759

ABSTRACT

In the face of emerging infectious diseases, there remains an unmet need for vaccine development where adjuvants that enhance immune responses to pathogenic antigens are highly desired. Using high-throughput screens with a cell-based nuclear factor κB (NF-κB) reporter assay, we identified a sulfamoyl benzamidothiazole bearing compound 1 that demonstrated a sustained activation of NF-κB after a primary stimulus with a Toll-like receptor (TLR)-4 agonist, lipopolysaccharide (LPS). Here, we explore systematic structure-activity relationship (SAR) studies on compound 1 that indicated the sites on the scaffold that tolerated modification and yielded more potent compounds compared to 1. The selected analogs enhanced release of immunostimulatory cytokines in the human monocytic cell line THP-1 cells and murine primary dendritic cells. In murine vaccination studies, select compounds were used as co-adjuvants in combination with the Food and Drug Administration approved TLR-4 agonistic adjuvant, monophosphoryl lipid A (MPLA) that showed significant enhancement in antigen-specific antibody titers compared to MPLA alone. Additionally, our SAR studies led to identification of a photoaffinity probe which will aid the target identification and mechanism of action studies in the future.


Subject(s)
Benzamides/pharmacology , NF-kappa B/metabolism , Thiazoles/pharmacology , Animals , Benzamides/chemistry , Cell Line , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Structure-Activity Relationship , Thiazoles/chemistry
13.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34078669

ABSTRACT

Vaccine adjuvants enhance and prolong pathogen-specific protective immune responses. Recent reports indicate that host factors-such as aging, pregnancy, and genetic polymorphisms-influence efficacies of vaccines adjuvanted with Toll-like receptor (TLR) or known pattern-recognition receptor (PRR) agonists. Although PRR independent adjuvants (e.g., oil-in-water emulsion and saponin) are emerging, these adjuvants induce some local and systemic reactogenicity. Hence, new TLR and PRR-independent adjuvants that provide greater potency alone or in combination without compromising safety are highly desired. Previous cell-based high-throughput screenings yielded a small molecule 81 [N-(4-chloro-2,5-dimethoxyphenyl)-4-ethoxybenzenesulfonamide], which enhanced lipopolysaccharide-induced NF-κB and type I interferon signaling in reporter assays. Here compound 81 activated innate immunity in primary human peripheral blood mononuclear cells and murine bone marrow-derived dendritic cells (BMDCs). The innate immune activation by 81 was independent of TLRs and other PRRs and was significantly reduced in mitochondrial antiviral-signaling protein (MAVS)-deficient BMDCs. Compound 81 activities were mediated by mitochondrial dysfunction as mitophagy inducers and a mitochondria specific antioxidant significantly inhibited cytokine induction by 81. Both compound 81 and a derivative obtained via structure-activity relationship studies, 2F52 [N-benzyl-N-(4-chloro-2,5-dimethoxyphenyl)-4-ethoxybenzenesulfonamide] modestly increased mitochondrial reactive oxygen species and induced the aggregation of MAVS. Neither 81 nor 2F52 injected as adjuvants caused local or systemic toxicity in mice at effective concentrations for vaccination. Furthermore, vaccination with inactivated influenza virus adjuvanted with 2F52 demonstrated protective effects in a murine lethal virus challenge study. As an unconventional and safe adjuvant that does not require known PRRs, compound 2F52 could be a useful addition to vaccines.


Subject(s)
Adjuvants, Immunologic/pharmacology , Influenza Vaccines/pharmacology , Influenza, Human/immunology , Mitochondria/drug effects , Orthomyxoviridae Infections/immunology , Animals , Antibodies, Viral/immunology , Dendritic Cells/immunology , Female , Gene Expression , Humans , Immunity, Innate/drug effects , Influenza Vaccines/immunology , Leukocytes, Mononuclear/immunology , Mice , Mice, Inbred BALB C , Mitochondria/genetics , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Stress, Physiological , Toll-Like Receptors
14.
Front Pharmacol ; 12: 668609, 2021.
Article in English | MEDLINE | ID: mdl-33935791

ABSTRACT

Extracellular vesicles (EVs) are identified as mediators of intercellular communication and cellular regulation. In the immune system, EVs play a role in antigen presentation as a part of cellular communication. To enable drug discovery and characterization of compounds that affect EV biogenesis, function, and release in immune cells, we developed and characterized a reporter cell line that allows the quantitation of EVs shed into culture media in phenotypic high-throughput screen (HTS) format. Tetraspanins CD63 and CD9 were previously reported to be enriched in EVs; hence, a construct with dual reporters consisting of CD63-Turbo-luciferase (Tluc) and CD9-Emerald green fluorescent protein (EmGFP) was engineered. This construct was transduced into the human monocytic leukemia cell line, THP-1. Cells expressing the highest EmGFP were sorted by flow cytometry as single cell, and clonal pools were expanded under antibiotic selection pressure. After four passages, the green fluorescence dimmed, and EV biogenesis was then tracked by luciferase activity in culture supernatants. The Tluc activities of EVs shed from CD63Tluc-CD9EmGFP reporter cells in the culture supernatant positively correlated with the concentrations of released EVs measured by nanoparticle tracking analysis. To examine the potential for use in HTS, we first miniaturized the assay into a robotic 384-well plate format. A 2210 commercial compound library (Maybridge) was then screened twice on separate days, for the induction of extracellular luciferase activity. The screening data showed high reproducibility on days 1 and 2 (78.6%), a wide signal window, and an excellent Z' factor (average of 2-day screen, 0.54). One hundred eighty-seven compounds showed a response ratio that was 3SD above the negative controls in both day 1 and 2 screens and were considered as hit candidates (approximately 10%). Twenty-two out of 40 re-tested compounds were validated. These results indicate that the performance of CD63Tluc-CD9EmGFP reporter cells is reliable, reproducible, robust, and feasible for HTS of compounds that regulate EV release by the immune cells.

15.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33970188

ABSTRACT

Neuroinflammation is a major component in the transition to and perpetuation of neuropathic pain states. Spinal neuroinflammation involves activation of TLR4, localized to enlarged, cholesterol-enriched lipid rafts, designated here as inflammarafts. Conditional deletion of cholesterol transporters ABCA1 and ABCG1 in microglia, leading to inflammaraft formation, induced tactile allodynia in naive mice. The apoA-I binding protein (AIBP) facilitated cholesterol depletion from inflammarafts and reversed neuropathic pain in a model of chemotherapy-induced peripheral neuropathy (CIPN) in wild-type mice, but AIBP failed to reverse allodynia in mice with ABCA1/ABCG1-deficient microglia, suggesting a cholesterol-dependent mechanism. An AIBP mutant lacking the TLR4-binding domain did not bind microglia or reverse CIPN allodynia. The long-lasting therapeutic effect of a single AIBP dose in CIPN was associated with anti-inflammatory and cholesterol metabolism reprogramming and reduced accumulation of lipid droplets in microglia. These results suggest a cholesterol-driven mechanism of regulation of neuropathic pain by controlling the TLR4 inflammarafts and gene expression program in microglia and blocking the perpetuation of neuroinflammation.


Subject(s)
Cholesterol/metabolism , Microglia/metabolism , Neuralgia/metabolism , Spinal Cord/metabolism , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Animals , Biological Transport/physiology , Cell Line , HEK293 Cells , Humans , Inflammation/metabolism , Male , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Protein Binding/physiology , Signal Transduction/physiology
16.
Rheum Dis Clin North Am ; 47(2): 245-264, 2021 05.
Article in English | MEDLINE | ID: mdl-33781493

ABSTRACT

Rheumatoid arthritis is one of most frequent rheumatic diseases, affecting around 1% of the population worldwide. Pain impacting the quality of life for the patient with rheumatoid arthritis, is often the primary factor leading them to seek medical care. Although sex-related differences in humans and animal models of rheumatoid arthritis are described, the correlation between pain and sex in rheumatoid arthritis has only recently been directly examined. Here we review the literature and explore the mechanisms underlying the expression of the pain phenotype in females and males in preclinical models of rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Sex Characteristics , Animals , Female , Humans , Male , Pain/etiology , Phenotype , Quality of Life
17.
Rheum Dis Clin North Am ; 47(2): xiii-xv, 2021 May.
Article in English | MEDLINE | ID: mdl-33781497
18.
Sci Rep ; 10(1): 15596, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973194

ABSTRACT

The adult K/BxN transgenic mouse develops spontaneous autoimmune arthritis with joint remodeling and profound bone loss. We report that both males and females display a severe sustained tactile allodynia which is reduced by gabapentin but not the potent cyclooxygenase inhibitor ketorolac. In dorsal horn, males and females show increased GFAP+ astrocytic cells; however, only males demonstrate an increase in Iba1+ microglia. In dorsal root ganglia (DRG), there is an increase in CGRP+, TH+, and Iba1+ (macrophage) labeling, but no increase in ATF3+ cells. At the ankle there is increased CGRP+, TH+, and GAP-43+ fiber synovial innervation. Thus, based on the changes in dorsal horn, DRG and peripheral innervation, we suggest that the adult K/BxN transgenic arthritic mice display a neuropathic phenotype, an assertion consistent with the analgesic pharmacology seen in this animal. These results indicate the relevance of this model to our understanding of the nociceptive processing which underlies the chronic pain state that evolves secondary to persistent joint inflammation.


Subject(s)
Arthritis, Experimental/complications , Ganglia, Spinal/pathology , Hyperalgesia/pathology , Knee Joint/pathology , Nerve Tissue/pathology , Nociceptive Pain/pathology , Analgesics/pharmacology , Animals , Arthritis, Experimental/physiopathology , Female , Gabapentin/pharmacology , Ganglia, Spinal/drug effects , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Knee Joint/drug effects , Male , Mice , Mice, Transgenic , Nerve Tissue/drug effects , Neuralgia/pathology , Nociceptive Pain/drug therapy , Nociceptive Pain/etiology , Phenotype
19.
Front Immunol ; 11: 1207, 2020.
Article in English | MEDLINE | ID: mdl-32636840

ABSTRACT

The limited efficacy of seasonal influenza vaccines is usually attributed to ongoing variation in the major antigenic targets for protective antibody responses including hemagglutinin (HA) and neuraminidase (NA). Hence, vaccine development has largely focused on broadening antigenic epitopes to generate cross-reactive protection. However, the vaccine adjuvant components which can accelerate, enhance and prolong antigenic immune responses, can also increase the breadth of these responses. We previously demonstrated that the combination of synthetic small-molecule Toll-like receptor 4 (TLR4) and TLR7 ligands is a potent adjuvant for recombinant influenza virus HA, inducing rapid, and sustained antibody responses that are protective against influenza viruses in homologous and heterologous murine challenge models. To further enhance adjuvant efficacy, we performed a structure-activity relationship study for the TLR4 ligand, N-cyclohexyl-2-((5-methyl-4-oxo-3-phenyl-4,5-dihydro-3H-pyrimido[5,4-b]indol-2-yl)thio)acetamide (C25H26N4O2S; 1Z105), and identified the 8-(furan-2-yl) substituted pyrimido[5,4-b]indole analog (C29H28N4O3S; 2B182C) as a derivative with higher potency in activating both human and mouse TLR4-NF-κB reporter cells and primary cells. In a prime-boost immunization model using inactivated influenza A virus [IIAV; A/California/04/2009 (H1N1)pdm09], 2B182C used as adjuvant induced higher serum anti-HA and anti-NA IgG1 levels compared to 1Z105, and also increased the anti-NA IgG2a responses. In combination with a TLR7 ligand, 1V270, 2B182C induced equivalent levels of anti-NA and anti-HA IgG1 to 1V270+1Z105. However, the combination of 1V270+2B182C induced 10-fold higher anti-HA and anti-NA IgG2a levels compared to 1V270+1Z105. A stable liposomal formulation of 1V270+2B182C was developed, which synergistically enhanced anti-HA and anti-NA IgG1 and IgG2a responses without demonstrable reactogenicity after intramuscular injection. Notably, vaccination with IIAV plus the liposomal formulation of 1V270+2B182C protected mice against lethal homologous influenza virus (H1N1)pdm09 challenge and reduced lung viral titers and cytokine levels. The combination adjuvant induced a greater diversity in B cell clonotypes of immunoglobulin heavy chain (IGH) genes in the draining lymph nodes and antibodies against a broad spectrum of HA epitopes encompassing HA head and stalk domains and with cross-reactivity against different subtypes of HA and NA. This novel combination liposomal adjuvant contributes to a more broadly protective vaccine while demonstrating an attractive safety profile.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antibodies, Viral/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Liposomes , Mice , Neuraminidase/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 7/immunology
20.
Elife ; 92020 02 04.
Article in English | MEDLINE | ID: mdl-32014112

ABSTRACT

Cyclic AMP (cAMP) is involved in many biological processes but little is known regarding its role in shaping immunity. Here we show that cAMP-PKA-CREB signaling (a pattern recognition receptor [PRR]-independent mechanism) regulates conventional type-2 Dendritic Cells (cDC2s) in mice and reprograms their Th17-inducing properties via repression of IRF4 and KLF4, transcription factors essential for cDC2-mediated Th2 induction. In mice, genetic loss of IRF4 phenocopies the effects of cAMP on Th17 induction and restoration of IRF4 prevents the cAMP effect. Moreover, curdlan, a PRR-dependent microbial product, activates CREB and represses IRF4 and KLF4, resulting in a pro-Th17 phenotype of cDC2s. These in vitro and in vivo results define a novel signaling pathway by which cDC2s display plasticity and provide a new molecular basis for the classification of novel cDC2 and cDC17 subsets. The findings also reveal that repressing IRF4 and KLF4 pathway can be harnessed for immuno-regulation.


Subject(s)
Interferon Regulatory Factors , Receptors, Pattern Recognition , Signal Transduction/immunology , Th17 Cells , Th2 Cells , Animals , Cell Line, Tumor , Cyclic AMP/immunology , Cyclic AMP/metabolism , Cytokines , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Interferon Regulatory Factors/antagonists & inhibitors , Interferon Regulatory Factors/immunology , Interferon Regulatory Factors/metabolism , Kruppel-Like Factor 4 , Mice , Receptors, Pattern Recognition/immunology , Receptors, Pattern Recognition/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL