Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
EMBO Mol Med ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926633

ABSTRACT

Triple-negative breast cancer (TNBC) has limited therapeutic options, is highly metastatic and characterized by early recurrence. Lipid metabolism is generally deregulated in TNBC and might reveal vulnerabilities to be targeted or used as biomarkers with clinical value. Ferroptosis is a type of cell death caused by iron-dependent lipid peroxidation which is facilitated by the presence of polyunsaturated fatty acids (PUFA). Here we identify fatty acid desaturases 1 and 2 (FADS1/2), which are responsible for PUFA biosynthesis, to be highly expressed in a subset of TNBC with a poorer prognosis. Lipidomic analysis, coupled with functional metabolic assays, showed that FADS1/2 high-expressing TNBC are susceptible to ferroptosis-inducing agents and that targeting FADS1/2 by both genetic interference and pharmacological approach renders those tumors ferroptosis-resistant while unbalancing PUFA/MUFA ratio by the supplementation of exogenous PUFA sensitizes resistant tumors to ferroptosis induction. Last, inhibiting lipid droplet (LD) formation and turnover suppresses the buffering capacity of LD and potentiates iron-dependent cell death. These findings have been validated in vitro and in vivo in mouse- and human-derived clinically relevant models and in a retrospective cohort of TNBC patients.

2.
Metabolites ; 13(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37999256

ABSTRACT

Proton transporters play a key role in maintaining the acidic tumor microenvironment; hence, their inhibition has been proposed as a new therapeutic treatment, although few methods can accurately assess their effect in vivo. In this study, we investigated whether MRI-CEST (Magnetic Resonance Imaging-Chemical Exchange Saturation Transfer) tumor pH imaging can be a useful tool to evaluate in vivo the therapeutic efficacy of several Proton Pump Inhibitors (PPIs) in breast cancer. Cell viability and extracellular pH assays were carried out in breast cancer cells cultured at physiological pH (7.4) or acid-adapted (pH of 6.5 and 6.8) following the exposure to inhibitors of V-ATPase (Lansoprazole, Esomeprazole) or NHE1 (Amiloride, Cariporide) at several concentrations. Next, triple-negative breast cancer 4T1 tumor-bearing mice were treated with Lansoprazole or Amiloride and MRI-CEST tumor pH imaging was utilized to assess the in vivo efficacy. Only Lansoprazole induced, in addition to breast cancer cell toxicity, a significant inhibition of proton extrusion. A significant reduction in tumor volume, prolonged survival, and increase in extracellular tumor pH after 1 and 2 weeks were observed after Lansoprazole treatment, whereas no significant changes were detected upon Amiloride treatment. Our results suggested that MRI-CEST tumor pH imaging can monitor the therapeutic efficacy of PPIs in breast cancer murine models.

3.
NMR Biomed ; 36(6): e4715, 2023 06.
Article in English | MEDLINE | ID: mdl-35187749

ABSTRACT

Since the inception of CEST MRI in the 1990s, a number of compounds have been identified as suitable for generating contrast, including paramagnetic lanthanide complexes, hyperpolarized atom cages and, most interesting, diamagnetic compounds. In the past two decades, there has been a major emphasis in this field on the identification and application of diamagnetic compounds that have suitable biosafety profiles for usage in medical applications. Even in the past five years there has been a tremendous growth in their numbers, with more and more emphasis being placed on finding those that can be ultimately used for patient studies on clinical 3 T scanners. At this point, a number of endogenous compounds present in tissue have been identified, and also natural and synthetic organic compounds that can be administered to highlight pathology via CEST imaging. Here we will provide a very extensive snapshot of the types of diamagnetic compound that can generate CEST MRI contrast, together with guidance on their utility on typical preclinical and clinical scanners and a review of the applications that might benefit the most from this new technology.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods
4.
Methods Mol Biol ; 2614: 287-311, 2023.
Article in English | MEDLINE | ID: mdl-36587132

ABSTRACT

Magnetic resonance imaging (MRI) is a noninvasive imaging technique that allows for physiological and functional studies of the tumor microenvironment. Within MRI, the emerging field of chemical exchange saturation transfer (CEST) has been largely exploited for assessing a salient feature of all solid tumors, extracellular acidosis. Iopamidol-based tumor pH imaging has been demonstrated to provide accurate and high spatial resolution extracellular tumor pH maps to elucidate tumor aggressiveness and for assessing response to therapy, with a high potential for clinical translation. Here, we describe the overall setup and steps for measuring tumor extracellular pH of tumor models in mice by exploiting MRI-CEST pH imaging with a preclinical MRI scanner following the administration of iopamidol. We address issues of pH calibration curve setup, animal handling, pH-responsive contrast agent injection, acquisition protocol, and image processing for accurate quantification and visualization of tumor acidosis.


Subject(s)
Acidosis , Neoplasms , Mice , Animals , Iopamidol , Hydrogen-Ion Concentration , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/pathology , Contrast Media , Acidosis/pathology , Tumor Microenvironment
5.
Cancers (Basel) ; 14(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36230838

ABSTRACT

The tumor microenvironment acidification confers treatment resistance; therefore, the interference with pH regulating systems is considered a new therapeutic strategy. In this study, two human prostate cancer cell lines, PC3 and LNCaP, have been treated in vitro with proton pump inhibitors (PPIs), namely Lansoprazole, Esomeprazole (V-ATPases-inhibitors), Cariporide, and Amiloride (NHE1-inhibitors). The cell viability and pH were assessed at several drug concentrations either at normoxic or hypoxic conditions. Since Esomeprazole showed the highest toxicity towards the PC3 cancer cells compared to LNCaP ones, athymic nude mice bearing subcutaneous or orthotopic PC3 tumors were treated with Esomeprazole (dose: 2.5 mg/kg body weight) for a period of three weeks-and tumor growth was monitored. MRI-CEST tumor pH imaging with Iopamidol was performed upon treatment at 3 h, 1 week (in combination with FDG-PET), and after 2 weeks for evaluating acute, early, and late responses. Although acute tumor pH changes were observed in vivo, long-term studies on both PC3 prostate cancer models did not provide any significant change in tumor acidosis or tumor growth. In conclusion, this work shows that MRI-CEST tumor pH imaging is a valuable tool for assessing the in vivo treatment response to PPIs.

6.
Life Sci Alliance ; 5(3)2022 03.
Article in English | MEDLINE | ID: mdl-34952892

ABSTRACT

Antibody secreting cells (ASCs) circulate after vaccination and infection and migrate to the BM where a subset known as long-lived plasma cells (LLPCs) persists and secrete antibodies for a lifetime. The mechanisms by which circulating ASCs become LLPCs are not well elucidated. Here, we show that human blood ASCs have distinct morphology, transcriptomes, and epigenetics compared with BM LLPCs. Compared with blood ASCs, BM LLPCs have decreased nucleus/cytoplasm ratio but increased endoplasmic reticulum and numbers of mitochondria. LLPCs up-regulate pro-survival genes MCL1, BCL2, and BCL-XL while simultaneously down-regulating pro-apoptotic genes HRK1, CASP3, and CASP8 Consistent with reduced gene expression, the pro-apoptotic gene loci are less accessible in LLPCs. Of the pro-survival genes, only BCL2 is concordant in gene up-regulation and loci accessibility. Using a novel in vitro human BM mimetic, we show that blood ASCs undergo similar morphological and molecular changes that resemble ex vivo BM LLPCs. Overall, our study demonstrates that early-minted blood ASCs in the BM microniche must undergo morphological, transcriptional, and epigenetic changes to mature into apoptotic-resistant LLPCs.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Genomic Imprinting , Plasma Cells/cytology , Plasma Cells/metabolism , Adolescent , Adult , Antibody Formation/genetics , Antibody Formation/immunology , Apoptosis/genetics , Biomarkers , Cell Survival , Female , Genetic Heterogeneity , Histocytochemistry , Humans , Immunophenotyping , Male , Middle Aged , Plasma Cells/immunology , Plasma Cells/ultrastructure , Time Factors , Young Adult
7.
Sci Rep ; 11(1): 21384, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725414

ABSTRACT

Group B Streptococcus (GBS) is generally an asymptomatic colonizer of human mucosa but it occasionally infects pregnant women and neonates through vertical transmission, causing disease during the first weeks of life with frequent and severe complications. Preclinical studies have shown that maternal vaccination with polysaccharide-based vaccines protects mothers and offspring from GBS mucosal colonization and consecutive infection. In these models, bacteria were inoculated in mouse either intravaginally in the last trimester of pregnancy or systemically in pups. Here, we investigated whether maternal vaccination with glycoconjugate vaccines may also prevent GBS-mediated colonization and disease in neonates using an infection route that more closely mimics inhalation or ingestion of bacteria during human delivery. To address this point, mice aged less than two days were intranasally challenged with epidemiologically relevant GBS strains. Bacteria were found to colonize nose and intestine, reaching in some cases lungs and blood during the first days of life. Bacteria were also found in vagina of a fraction of colonized female mice within the first month of life. GBS-specific IgG induced by maternal vaccination with a glycoconjugate vaccine formulation were found in blood and mucosal tissues of newborns. Finally, when intranasally challenged with GBS serotype III strains, pups delivered by vaccinated mothers were partially protected against mucosal colonization and deeper infection.


Subject(s)
Glycoconjugates/therapeutic use , Streptococcal Infections/prevention & control , Streptococcal Vaccines/therapeutic use , Streptococcus agalactiae/immunology , Animals , Animals, Newborn , Female , Immunity, Maternally-Acquired , Infectious Disease Transmission, Vertical/prevention & control , Mice , Pregnancy , Streptococcal Infections/immunology
8.
Cancers (Basel) ; 13(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34359705

ABSTRACT

Colorectal cancer (CRC) is a heterogeneous disease showing significant variability in clinical aggressiveness. Primary and acquired resistance limits the efficacy of available treatments, and identification of effective drug combinations is needed to further improve patients' outcomes. We previously found that the NEDD8-activating enzyme inhibitor pevonedistat induced tumor stabilization in preclinical models of poorly differentiated, clinically aggressive CRC resistant to available therapies. To identify drugs that can be effectively combined with pevonedistat, we performed a "drop-out" loss-of-function synthetic lethality screening with an shRNA library covering 200 drug-target genes in four different CRC cell lines. Multiple screening hits were found to be involved in the EGFR signaling pathway, suggesting that, rather than inhibition of a specific gene, interference with the EGFR pathway at any level could be effectively leveraged for combination therapies based on pevonedistat. Exploiting both BRAF-mutant and RAS/RAF wild-type CRC models, we validated the therapeutic relevance of our findings by showing that combined blockade of NEDD8 and EGFR pathways led to increased growth arrest and apoptosis both in vitro and in vivo. Pathway modulation analysis showed that compensatory feedback loops induced by single treatments were blunted by the combinations. These results unveil possible therapeutic opportunities in specific CRC clinical settings.

9.
Mucosal Immunol ; 14(5): 1144-1159, 2021 09.
Article in English | MEDLINE | ID: mdl-34050324

ABSTRACT

Increased IgE is a typical feature of allergic rhinitis. Local class-switch recombination has been intimated but B cell precursors and mechanisms remain elusive. Here we describe the dynamics underlying the generation of IgE-antibody secreting cells (ASC) in human nasal polyps (NP), mucosal tissues rich in ASC without germinal centers (GC). Using VH next generation sequencing, we identified an extrafollicular (EF) mucosal IgD+ naïve-like intermediate B cell population with high connectivity to the mucosal IgE ASC. Mucosal IgD+ B cells, express germline epsilon transcripts and predominantly co-express IgM. However, a small but significant fraction co-express IgG or IgA instead which also show connectivity to ASC IgE. Phenotypically, NP IgD+ B cells display an activated profile and molecular evidence of BCR engagement. Transcriptionally, mucosal IgD+ B cells reveal an intermediate profile between naïve B cells and ASC. Single cell IgE ASC analysis demonstrates lower mutational frequencies relative to IgG, IgA, and IgD ASC consistent with IgE ASC derivation from mucosal IgD+ B cell with low mutational load. In conclusion, we describe a novel mechanism of GC-independent, extrafollicular IgE ASC formation at the nasal mucosa whereby activated IgD+ naïve B cells locally undergo direct and indirect (through IgG and IgA), IgE class switch.


Subject(s)
Antibody Formation/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Immunoglobulin D/immunology , Immunoglobulin E/immunology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Adult , Antibody Formation/genetics , Antibody-Producing Cells/immunology , Antibody-Producing Cells/metabolism , Computational Biology , Gene Expression Profiling , Germinal Center/immunology , High-Throughput Nucleotide Sequencing , Humans , Hypersensitivity/etiology , Hypersensitivity/metabolism , Immunoglobulin Class Switching/genetics , Immunoglobulin Class Switching/immunology , Immunoglobulin Isotypes/genetics , Immunoglobulin Isotypes/immunology , Immunophenotyping , Nasal Polyps/etiology , Nasal Polyps/metabolism , Nasal Polyps/pathology , Pollen/immunology , Seasons , Somatic Hypermutation, Immunoglobulin
10.
Front Oncol ; 10: 161, 2020.
Article in English | MEDLINE | ID: mdl-32133295

ABSTRACT

Altered metabolism is considered a core hallmark of cancer. By monitoring in vivo metabolites changes or characterizing the tumor microenvironment, non-invasive imaging approaches play a fundamental role in elucidating several aspects of tumor biology. Within the magnetic resonance imaging (MRI) modality, the chemical exchange saturation transfer (CEST) approach has emerged as a new technique that provides high spatial resolution and sensitivity for in vivo imaging of tumor metabolism and acidosis. This mini-review describes CEST-based methods to non-invasively investigate tumor metabolism and important metabolites involved, such as glucose and lactate, as well as measurement of tumor acidosis. Approaches that have been exploited to assess response to anticancer therapies will also be reported for each specific technique.

11.
Int Forum Allergy Rhinol ; 8(10): 1184-1189, 2018 10.
Article in English | MEDLINE | ID: mdl-29897665

ABSTRACT

BACKGROUND: The endocannabinoid system represents a highly conserved, innate signaling network with direct and indirect control of eicosanoid-mediated inflammation. Activation of the type 2 cannabinoid receptor (CB2R) leads to decreased type 2 inflammation and reduced production of arachidonic acid (AA). Given that altered AA metabolism is associated with aspirin-exacerbated respiratory disease (AERD), we hypothesized that expression of the CB2R gene CNR2 is increased in AERD. METHODS: Nasal polyps from consecutive patients undergoing endoscopic sinus surgery for AERD or allergic fungal rhinosinusitis (AFRS) were prospectively evaluated. Control sphenoid mucosa was collected from patients undergoing endoscopic skull base procedures. Expression and localization of endocannabinoid receptors were evaluated by quantitative reverse transcript-polymerase chain reaction (qRT-PCR) and immunohistochemistry. A 2-group unpaired t test with unequal variances was used to evaluate group differences. RESULTS: Thirteen subjects were included in this pilot study, including 5 controls, 5 AFRS patients, and 3 AERD patients. Upregulated expression of CNR2 was detected in subjects with AERD vs both AFRS (p = 0.049) and controls (p = 0.047), with a mean increase of 5.2-fold. No significant differences in expression of the CB1R gene CNR1 were detected between control and AFRS groups. Immunohistochemistry predominantly localized CB1R and CB2R expression to the surface epithelium in all subjects. CONCLUSION: The endocannabinoid system is an emerging immunomodulatory network that may be involved in AERD. This is the first study of CB2R in sinonasal disease, showing significantly increased transcription in nasal polyps from subjects with AERD. Additional study is warranted to further evaluate the contribution and therapeutic potential of this novel finding in chronic rhinosinusitis.


Subject(s)
Asthma, Aspirin-Induced/genetics , Receptor, Cannabinoid, CB2/genetics , Up-Regulation , Adolescent , Adult , Asthma, Aspirin-Induced/metabolism , Asthma, Aspirin-Induced/pathology , Chronic Disease , Epithelium/metabolism , Female , Humans , Male , Middle Aged , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Nasal Polyps/metabolism , Nasal Polyps/pathology , Pilot Projects , Receptor, Cannabinoid, CB2/metabolism , Rhinitis, Allergic/genetics , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/pathology , Sinusitis/metabolism , Sinusitis/pathology , Young Adult
12.
Sci Rep ; 6: 38043, 2016 11 30.
Article in English | MEDLINE | ID: mdl-27901071

ABSTRACT

Staphylococcus aureus is the major cause of human septic arthritis and osteomyelitis, which deserve special attention due to their rapid evolution and resistance to treatment. The progression of the disease depends on both bacterial presence in situ and uncontrolled disruptive immune response, which is responsible for chronic disease. Articular and bone infections are often the result of blood bacteremia, with the knees and hips being the most frequently infected joints showing the worst clinical outcome. We report the development of a hematogenous model of septic arthritis in murine knees, which progresses from an acute to a chronic phase, similarly to what occurs in humans. Characterization of the local and systemic inflammatory and immune responses following bacterial infection brought to light specific signatures of disease. Immunization of mice with the vaccine formulation we have recently described (4C-Staph), induced a strong antibody response and specific CD4+ effector memory T cells, and resulted in reduced bacterial load in the knee joints, a milder general inflammatory state and protection against bacterial-mediated cellular toxicity. Possible correlates of protection are finally proposed, which might contribute to the development of an effective vaccine for human use.


Subject(s)
Arthritis, Infectious , Knee Joint , Staphylococcal Infections , Staphylococcal Vaccines , Staphylococcus aureus/immunology , Vaccination , Animals , Arthritis, Infectious/immunology , Arthritis, Infectious/microbiology , Arthritis, Infectious/pathology , Arthritis, Infectious/prevention & control , Female , Knee Joint/immunology , Knee Joint/microbiology , Knee Joint/pathology , Mice , Staphylococcal Infections/immunology , Staphylococcal Infections/pathology , Staphylococcal Infections/prevention & control , Staphylococcal Vaccines/immunology , Staphylococcal Vaccines/pharmacology
13.
mBio ; 4(1): e00387-12, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23300245

ABSTRACT

UNLABELLED: Streptolysin O is a potent pore-forming toxin produced by group A Streptococcus. The aims of the present study were to dissect the relative contributions of different structural domains of the protein to hemolytic activity, to obtain a detoxified form of streptolysin O amenable to human vaccine formulation, and to investigate the role of streptolysin O-specific antibodies in protection against group A Streptococcus infection. On the basis of in silico structural predictions, we introduced two amino acid substitutions, one in the proline-rich domain 1 and the other in the conserved undecapeptide loop in domain 4. The resulting streptolysin O derivative showed no toxicity, was highly impaired in binding to eukaryotic cells, and was unable to form organized oligomeric structures on the cell surface. However, it was fully capable of conferring consistent protection in a murine model of group A Streptococcus infection. When we engineered a streptococcal strain to express the double-mutated streptolysin O, a drastic reduction in virulence as well as a diminished capacity to kill immune cells recruited at the infection site was observed. Furthermore, when mice immunized with the toxoid were challenged with the wild-type and mutant strains, protection only against the wild-type strain, not against the strain expressing the double-mutated streptolysin O, was obtained. We conclude that protection occurs by antibody-mediated neutralization of active toxin. IMPORTANCE: We present a novel example of structural design of a vaccine antigen optimized for human vaccine use. Having previously demonstrated that immunization of mice with streptolysin O elicits a protective immune response against infection with group A Streptococcus strains of different serotypes, we developed in this study a double-mutated nontoxic derivative that represents a novel tool for the development of protective vaccine formulations against this important human pathogen. Furthermore, the innovative construction of an isogenic strain expressing a functionally inactive toxin and its use in infection and opsonophagocytosis experiments allowed us to investigate the mechanism by which streptolysin O mediates protection against group A Streptococcus. Finally, the ability of this toxin to directly attack and kill host immune cells during infection was studied in an air pouch model, which allowed parallel quantification of cellular recruitment, vitality, and cytokine release at the infection site.


Subject(s)
Amino Acid Substitution , Streptococcus pyogenes/pathogenicity , Streptolysins/genetics , Streptolysins/toxicity , Virulence Factors/genetics , Virulence Factors/toxicity , Animals , Antibodies, Bacterial/blood , Antitoxins/blood , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/toxicity , Disease Models, Animal , Mice , Models, Molecular , Mutant Proteins/genetics , Mutant Proteins/immunology , Mutant Proteins/toxicity , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/pathology , Streptococcal Infections/prevention & control , Streptococcus pyogenes/genetics , Streptococcus pyogenes/immunology , Streptolysins/immunology , Survival Analysis , Virulence , Virulence Factors/immunology
14.
Eur J Cancer ; 47(6): 926-33, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21131195

ABSTRACT

In this study, we analysed the expression of the transcriptional coactivator TAZ (transcriptional co-activator with PDZ-binding motif), also named WWTR1, in a panel of papillary thyroid carcinoma samples and we observed a significant deregulation of its expression in such tumours. Specifically, by quantitative real-time PCR (qRT-PCR) we evaluated TAZ mRNA levels in tissue specimens (n=61) of papillary thyroid carcinoma (PTC) and herein we show that the PTC samples express much higher TAZ mRNA levels with respect to the normal thyroid tissue (p<0.001). TAZ expression was also evaluated in normal (n=10) and pathological human thyroids (n=17) by immunohistochemical analysis and the increase of TAZ protein levels in PTC was confirmed. To further analyse the molecular mechanisms underlying TAZ overexpression in PTC, we used an inducible system consisting of FRTL-5 rat thyroid cells expressing a conditional RAS oncoprotein and we show that the activation of the RAS signalling pathway is involved in TAZ deregulation. These observations suggest that the activated effectors of the RAS/RAF/MEK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) signalling pathway are involved in the increased expression of TAZ, supporting the idea that this may also occur in thyroid papillary carcinoma. Moreover, we demonstrated that the overexpression of TAZ is able to confer growth advantage to thyroid cells in culture and to induce epithelial-mesenchymal transition. In conclusion, these findings support a potential role for TAZ in the pathogenesis of papillary thyroid carcinomas.


Subject(s)
Carcinoma, Papillary/etiology , Intracellular Signaling Peptides and Proteins/metabolism , Thyroid Neoplasms/etiology , Transcription Factors/metabolism , Acyltransferases , Animals , Carcinoma , Carcinoma, Papillary/metabolism , Cell Division , Cell Transformation, Neoplastic , Humans , Nuclear Receptor Coactivators/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-ret/metabolism , RNA, Messenger/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction , Thyroid Cancer, Papillary , Thyroid Neoplasms/metabolism , Trans-Activators , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...