Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612495

ABSTRACT

Cholestasis is characterized by disrupted bile flow from the liver to the small intestine. Although etiologically different cholestasis displays similar symptoms, diverse factors can contribute to the progression of the disease and determine the appropriate therapeutic option. Therefore, stratifying cholestatic patients is essential for the development of tailor-made treatment strategies. Here, we have analyzed the liver proteome from cholestatic patients of different etiology. In total, 7161 proteins were identified and quantified, of which 263 were differentially expressed between control and cholestasis groups. These differential proteins point to deregulated cellular processes that explain part of the molecular framework of cholestasis progression. However, the clustering of different cholestasis types was limited. Therefore, a machine learning pipeline was designed to identify a panel of 20 differential proteins that segregate different cholestasis groups with high accuracy and sensitivity. In summary, proteomics combined with machine learning algorithms provides valuable insights into the molecular mechanisms of cholestasis progression and a panel of proteins to discriminate across different types of cholestasis. This strategy may prove useful in developing precision medicine approaches for patient care.


Subject(s)
Cholestasis , Proteomics , Humans , Cholestasis/etiology , Liver , Algorithms , Cluster Analysis
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642480

ABSTRACT

BACKGROUND AND AIMS: Liver regeneration is essential for the preservation of homeostasis and survival. Bile acids (BAs)-mediated signaling is necessary for liver regeneration, but BAs levels need to be carefully controlled to avoid hepatotoxicity. We studied the early response of the BAs-fibroblast growth factor 19 (FGF19) axis in healthy individuals undergoing hepatectomy for living donor liver transplant. We also evaluated BAs synthesis in mice upon partial hepatectomy (PH) and acute inflammation, focusing on the regulation of cytochrome-7A1 (CYP7A1), a key enzyme in BAs synthesis from cholesterol. METHODS: Serum was obtained from twelve human liver donors. Mice underwent 2/3-PH or sham-operation. Acute inflammation was induced with bacterial lipopolysaccharide (LPS) in mice fed control or antoxidant-supplemented diets. BAs and 7α-hydroxy-4-cholesten-3-one (C4) levels were measured by HPLC-MS/MS; serum FGF19 by ELISA. Gene expression and protein levels were analyzed by RT-qPCR and western-blot. RESULTS: Serum BAs levels increased after PH. In patients with more pronounced hypercholanemia, FGF19 concentrations transiently rose, while C4 levels (a readout of CYP7A1 activity) dropped 2 h post-resection in all cases. Serum BAs and C4 followed the same pattern in mice 1 h after PH, but C4 levels also dropped in sham-operated and LPS-treated animals, without marked changes in CYP7A1 protein levels. LPS-induced serum C4 decline was attenuated in mice fed an antioxidant-supplemented diet. CONCLUSIONS: In human liver regeneration FGF19 upregulation may constitute a protective response from BAs excess during liver regeneration. Our findings suggest the existence of post-translational mechanisms regulating CYP7A1 activity, and therefore BAs synthesis, independent from CYP7A1/Cyp7a1 gene transcription.


Subject(s)
Bile Acids and Salts , Cholesterol 7-alpha-Hydroxylase , Fibroblast Growth Factors , Hepatectomy , Liver Regeneration , Humans , Animals , Bile Acids and Salts/metabolism , Bile Acids and Salts/biosynthesis , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Liver Regeneration/drug effects , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Mice , Male , Female , Adult , Middle Aged , Liver/metabolism , Mice, Inbred C57BL , Liver Transplantation , Lipopolysaccharides/pharmacology
3.
J Proteome Res ; 23(4): 1433-1442, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38488493

ABSTRACT

MDR3 (multidrug resistance 3) deficiency in humans (MDR2 in mice) causes progressive familial intrahepatic cholestasis type 3 (PFIC3). PFIC3 is a lethal disease characterized by an early onset of intrahepatic cholestasis progressing to liver cirrhosis, a preneoplastic condition, putting individuals at risk of hepatocellular carcinoma (HCC). Hepatocyte-like organoids from MDR2-deficient mice (MDR2KO) were used in this work to study the molecular alterations caused by the deficiency of this transporter. Proteomic analysis by mass spectrometry allowed characterization of 279 proteins that were differentially expressed in MDR2KO compared with wild-type organoids. Functional enrichment analysis indicated alterations in three main cellular functions: (1) interaction with the extracellular matrix, (2) remodeling intermediary metabolism, and (3) cell proliferation and differentiation. The affected cellular processes were validated by orthogonal molecular biology techniques. Our results point to molecular mechanisms associated with PFIC3 that may drive the progression to liver cirrhosis and HCC and suggest proteins and cellular processes that could be targeted for the development of early detection strategies for these severe liver diseases.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Carcinoma, Hepatocellular , Cholestasis, Intrahepatic , Cholestasis , Liver Neoplasms , Animals , Humans , Mice , ATP Binding Cassette Transporter, Subfamily B/deficiency , Carcinoma, Hepatocellular/pathology , Cholestasis/genetics , Liver/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice, Knockout , Proteomics
4.
Biofactors ; 50(4): 794-809, 2024.
Article in English | MEDLINE | ID: mdl-38284625

ABSTRACT

Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a severe rare liver disease that affects between 1/50,000 and 1/100,000 children. In physiological conditions, bile is produced by the liver and stored in the gallbladder, and then it flows to the small intestine to play its role in fat digestion. To prevent tissue damage, bile acids (BAs) are kept in phospholipid micelles. Mutations in phosphatidyl choline transporter ABCB4 (MDR3) lead to intrahepatic accumulation of free BAs that result in liver damage. PFIC3 onset usually occurs at early ages, progresses rapidly, and the prognosis is poor. Currently, besides the palliative use of ursodeoxycholate, the only available treatment for this disease is liver transplantation, which is really challenging for short-aged patients. To gain insight into the pathogenesis of PFIC3 we have performed an integrated proteomics and phosphoproteomics study in human liver samples to then validate the emerging functional hypotheses in a PFIC3 murine model. We identified 6246 protein groups, 324 proteins among them showing differential expression between control and PFIC3. The phosphoproteomic analysis allowed the identification of 5090 phosphopeptides, from which 215 corresponding to 157 protein groups, were differentially phosphorylated in PFIC3, including MDR3. Regulation of essential cellular processes and structures, such as inflammation, metabolic reprogramming, cytoskeleton and extracellular matrix remodeling, and cell proliferation, were identified as the main drivers of the disease. Our results provide a strong molecular background that significantly contributes to a better understanding of PFIC3 and provides new concepts that might prove useful in the clinical management of patients.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Cholestasis, Intrahepatic , Proteomics , Humans , Cholestasis, Intrahepatic/metabolism , Cholestasis, Intrahepatic/genetics , Cholestasis, Intrahepatic/pathology , Animals , Proteomics/methods , Mice , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/deficiency , Liver/metabolism , Liver/pathology , Male , Disease Models, Animal , Phosphorylation , Female , Bile Acids and Salts/metabolism , Mutation
5.
J Proteome Res ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37863471

ABSTRACT

The lack of sensitive diagnostic methods to detect Mycobacterium avium subsp. paratuberculosis (Map) subclinical infections has hindered the control of paratuberculosis (PTB). The serum proteomic profiles of naturally infected cows presenting focal and diffuse pathological forms of PTB and negative controls (n = 4 per group) were analyzed using TMT-6plex quantitative proteomics. Focal and diffuse are the most frequent pathological forms in subclinical and clinical stages of PTB, respectively. One (focal versus (vs.) control), eight (diffuse vs. control), and four (focal vs. diffuse) differentially abundant (DA) proteins (q-value < 0.05) were identified. Ingenuity pathway analysis of the DA proteins revealed changes in the acute-phase response and lipid metabolism. Six candidate biomarkers were selected for further validation by specific ELISA using serum from animals with focal, multifocal, and diffuse PTB-associated lesions (n = 108) and controls (n = 56). Overall, the trends of the serum expression levels of the selected proteins were consistent with the proteomic results. Alpha-1-acid glycoprotein (ORM1)-based ELISA, insulin-like growth factor-binding protein 2 (IGFBP2)-based ELISA, and the anti-Map ELISA had the best diagnostic performance for detection of animals with focal, multifocal, and diffuse lesions, respectively. Our findings identify potential biomarkers that improve diagnostic sensitivity of PTB and help to elucidate the mechanisms involved in PTB pathogenesis.

6.
Biofactors ; 49(4): 912-927, 2023.
Article in English | MEDLINE | ID: mdl-37171157

ABSTRACT

The liver is the only solid organ capable of regenerating itself to regain 100% of its mass and function after liver injury and/or partial hepatectomy (PH). This exceptional property represents a therapeutic opportunity for severe liver disease patients. However, liver regeneration (LR) might fail due to poorly understood causes. Here, we have investigated the regulation of liver proteome and phosphoproteome at a short time after PH (9 h), to depict a detailed mechanistic background of the early LR phase. Furthermore, we analyzed the dynamic changes of the serum proteome and metabolome of healthy living donor liver transplant (LDLT) donors at different time points after surgery. The molecular profiles from both analyses were then correlated. Insulin and FXR-FGF15/19 signaling were stimulated in mouse liver after PH, leading to the activation of the main intermediary kinases (AKT and ERK). Besides, inhibition of the hippo pathway led to an increased expression of its target genes and of one of its intermediary proteins (14-3-3 protein), contributing to cell proliferation. In association with these processes, metabolic reprogramming coupled to enhanced mitochondrial activity cope for the energy and biosynthetic requirements of LR. In human serum of LDLT donors, we identified 56 proteins and 13 metabolites statistically differential which recapitulate some of the main cellular processes orchestrating LR in its early phase. These results provide mechanisms and protein mediators of LR that might prove useful for the follow-up of the regenerative process in the liver after PH as well as preventing the occurrence of complications associated with liver resection.


Subject(s)
Liver Regeneration , Liver Transplantation , Mice , Animals , Humans , Liver Regeneration/genetics , Liver Transplantation/methods , Proteome/genetics , Proteome/metabolism , Living Donors , Liver/surgery , Liver/metabolism
7.
Metabolites ; 12(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36144184

ABSTRACT

Liver diseases cause approximately 2 million deaths per year worldwide and had an increasing incidence during the last decade. Risk factors for liver diseases include alcohol consumption, obesity, diabetes, the intake of hepatotoxic substances like aflatoxin, viral infection, and genetic determinants. Liver cancer is the sixth most prevalent cancer and the third in mortality (second in males). The low survival rate (less than 20% in 5 years) is partially explained by the late diagnosis, which remarks the need for new early molecular biomarkers. One-carbon metabolism integrates folate and methionine cycles and participates in essential cell processes such as redox homeostasis maintenance and the regulation of methylation reactions through the production of intermediate metabolites such as cysteine and S-Adenosylmethionine. One-carbon metabolism has a tissue specific configuration, and in the liver, the participating enzymes are abundantly expressed-a requirement to maintain hepatocyte differentiation. Targeted proteomics studies have revealed significant differences in hepatocellular carcinoma and cirrhosis, suggesting that monitoring one-carbon metabolism enzymes can be useful for stratification of liver disease patients and to develop precision medicine strategies for their clinical management. Here, reprogramming of one-carbon metabolism in liver diseases is described and the role of mass spectrometry to follow-up these alterations is discussed.

8.
Biomedicines ; 10(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35884998

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose outbreak in 2019 led to an ongoing pandemic with devastating consequences for the global economy and human health. According to the World Health Organization, COVID-19 has affected more than 481 million people worldwide, with 6 million confirmed deaths. The joint efforts of the scientific community have undoubtedly increased the pace of production of COVID-19 vaccines, but there is still so much uncharted ground to cover regarding the mechanisms of SARS-CoV-2 infection, replication and host response. These issues can be approached by proteomics with unprecedented capacity paving the way for the development of more efficient strategies for patient care. In this study, we present a deep proteome analysis that has been performed on a cohort of 72 COVID-19 patients aiming to identify serum proteins assessing the dynamics of the disease at different age ranges. A panel of 53 proteins that participate in several functions such as acute-phase response and inflammation, blood coagulation, cell adhesion, complement cascade, endocytosis, immune response, oxidative stress and tissue injury, have been correlated with patient severity, suggesting a molecular basis for their clinical stratification. Eighteen protein candidates were further validated by targeted proteomics in an independent cohort of 84 patients including a group of individuals that had satisfactorily resolved SARS-CoV-2 infection. Remarkably, all protein alterations were normalized 100 days after leaving the hospital, which further supports the reliability of the selected proteins as hallmarks of COVID-19 progression and grading. The optimized protein panel may prove its value for optimal severity assessment as well as in the follow up of COVID-19 patients.

9.
J Exp Clin Cancer Res ; 41(1): 183, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35619118

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. METHODS: Cholangiocarcinogenesis was induced in rats (TAA) and mice (JnkΔhepa + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRASG12D cells. Cell signaling, growth, gene regulation and [U-13C]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. RESULTS: Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRASG12D can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRASG12D promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRASG12D CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. CONCLUSIONS: In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Arachnodactyly , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Carcinogenesis/genetics , Cholangiocarcinoma/pathology , Contracture , Epigenesis, Genetic , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glucose , Glycine/metabolism , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Phosphoglycerate Dehydrogenase/genetics , Proteomics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Rats , Serine/metabolism
10.
J. physiol. biochem ; 78(1): 229–243, feb. 2022. graf, ilus
Article in English | IBECS | ID: ibc-215885

ABSTRACT

Precision medicine promises to overcome the constraints of the traditional “one-for-all” healthcare approach through a clear understanding of the molecular features of a disease, allowing for innovative and tailored treatments. State-of-the-art proteomics has the potential to accurately explore the human proteome to identify, quantify, and characterize proteins associated with disease progression. There is a pressing need for informative biomarkers to diagnose liver disease early in its course to prevent severe disease for which no efficient treatment is yet available. Here, we propose the concept of a cellular pathway as a functional biomarker, whose monitorization may inform normal and pathological status. We have developed a standardized targeted selected-reaction monitoring assay to detect and quantify 13 enzymes of one-carbon metabolism (1CM). The assay is compliant with Clinical Proteomics Tumor Analysis Consortium (CPTAC) guidelines and has been included in the protein quantification assays that can be accessed through the assay portal at the CPTAC web page. To test the feasibility of the assay, we conducted a retrospective, proof-of-concept study on a collection of liver samples from healthy controls and from patients with cirrhosis or hepatocellular carcinoma (HCC). Our results indicate a significant reconfiguration of 1CM upon HCC development resulting from a process that can already be identified in cirrhosis. Our findings indicate that the systematic and integrated quantification of 1CM enzymes is a promising cell function-based biomarker for patient stratification, although further experiments with larger cohorts are needed to confirm these findings. (AU)


Subject(s)
Humans , Liver Neoplasms/diagnosis , Carcinoma, Hepatocellular , Carbon , Mass Spectrometry/methods , Retrospective Studies
11.
J Physiol Biochem ; 78(1): 229-243, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34897580

ABSTRACT

Precision medicine promises to overcome the constraints of the traditional "one-for-all" healthcare approach through a clear understanding of the molecular features of a disease, allowing for innovative and tailored treatments. State-of-the-art proteomics has the potential to accurately explore the human proteome to identify, quantify, and characterize proteins associated with disease progression. There is a pressing need for informative biomarkers to diagnose liver disease early in its course to prevent severe disease for which no efficient treatment is yet available. Here, we propose the concept of a cellular pathway as a functional biomarker, whose monitorization may inform normal and pathological status. We have developed a standardized targeted selected-reaction monitoring assay to detect and quantify 13 enzymes of one-carbon metabolism (1CM). The assay is compliant with Clinical Proteomics Tumor Analysis Consortium (CPTAC) guidelines and has been included in the protein quantification assays that can be accessed through the assay portal at the CPTAC web page. To test the feasibility of the assay, we conducted a retrospective, proof-of-concept study on a collection of liver samples from healthy controls and from patients with cirrhosis or hepatocellular carcinoma (HCC). Our results indicate a significant reconfiguration of 1CM upon HCC development resulting from a process that can already be identified in cirrhosis. Our findings indicate that the systematic and integrated quantification of 1CM enzymes is a promising cell function-based biomarker for patient stratification, although further experiments with larger cohorts are needed to confirm these findings.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carbon , Humans , Liver Neoplasms/diagnosis , Mass Spectrometry/methods , Retrospective Studies
12.
Methods Mol Biol ; 2420: 1-10, 2022.
Article in English | MEDLINE | ID: mdl-34905161

ABSTRACT

One of the critical issues to warrant the success of a proteome-wide analysis is sample preparation. Efficient protein extraction in the absence of interferent material is mandatory to achieve an ample proteome coverage by mass spectrometry. The study of biological fluids is always challenging due to their specific biochemical composition. However, there is increasing interest in their characterization as it will provide proteins that may advice disease setting, state, and progression. In particular, bile is proximal to liver and pancreas, and its study is especially attractive since it might provide valuable information for the clinical management of severe diseases afflicting these organs, which are at an urgent need of new biomarkers. Though previous efforts have been made to optimize protocols to analyze bile proteome, only partial descriptions were achieved due to its complex composition, where proteins represent less than 5% of the organic components. Here we describe a new method that significantly increases the bile proteome coverage while reducing by a factor of six the amount of sample required for the proteomic analysis.


Subject(s)
Proteome , Proteomics , Bile , Biomarkers , Mass Spectrometry
13.
Methods Mol Biol ; 2420: 159-175, 2022.
Article in English | MEDLINE | ID: mdl-34905173

ABSTRACT

One-carbon metabolism (1CM) plays a central role in liver physiology, being the source of essential metabolites such as S-adenosylmethionine, the main alkylating agent in living cells, and glutathione, their most important nonenzymatic antioxidant defense. Impairment of 1CM in hepatocytes is a recognized factor associated to chronic liver disorders and hepatocellular carcinoma. With this in mind, we have proposed the concept of functional biomarker referring to a cellular pathway that can be systematically monitored as indicative of a particular physiological or pathological condition. Here we describe a targeted mass spectrometry (MRM) protocol to simultaneously quantify 13 1CM enzymes in liver tissue specimens.


Subject(s)
Carbon/metabolism , Carcinoma, Hepatocellular , Humans , Liver Neoplasms , Mass Spectrometry , Proteomics
14.
J Proteome Res ; 20(12): 5227-5240, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34670092

ABSTRACT

The 2021 Metrics of the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 357 (92.8%) of the 19 778 predicted proteins coded in the human genome, a gain of 483 since 2020 from reports throughout the world reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 478 to 1421. This represents remarkable progress on the proteome parts list. The utilization of proteomics in a broad array of biological and clinical studies likewise continues to expand with many important findings and effective integration with other omics platforms. We present highlights from the Immunopeptidomics, Glycoproteomics, Infectious Disease, Cardiovascular, Musculo-Skeletal, Liver, and Cancers B/D-HPP teams and from the Knowledgebase, Mass Spectrometry, Antibody Profiling, and Pathology resource pillars, as well as ethical considerations important to the clinical utilization of proteomics and protein biomarkers.


Subject(s)
Benchmarking , Proteome , Databases, Protein , Humans , Mass Spectrometry/methods , Proteome/analysis , Proteome/genetics , Proteomics/methods
15.
Hepatology ; 74(5): 2791-2807, 2021 11.
Article in English | MEDLINE | ID: mdl-34170569

ABSTRACT

BACKGROUND AND AIMS: Hepatocellular dedifferentiation is emerging as an important determinant in liver disease progression. Preservation of mature hepatocyte identity relies on a set of key genes, predominantly the transcription factor hepatocyte nuclear factor 4α (HNF4α) but also splicing factors like SLU7. How these factors interact and become dysregulated and the impact of their impairment in driving liver disease are not fully understood. APPROACH AND RESULTS: Expression of SLU7 and that of the adult and oncofetal isoforms of HNF4α, driven by its promoter 1 (P1) and P2, respectively, was studied in diseased human and mouse livers. Hepatic function and damage response were analyzed in wild-type and Slu7-haploinsufficient/heterozygous (Slu7+/- ) mice undergoing chronic (CCl4 ) and acute (acetaminophen) injury. SLU7 expression was restored in CCl4 -injured mice using SLU7-expressing adeno-associated viruses (AAV-SLU7). The hepatocellular SLU7 interactome was characterized by mass spectrometry. Reduced SLU7 expression in human and mouse diseased livers correlated with a switch in HNF4α P1 to P2 usage. This response was reproduced in Slu7+/- mice, which displayed increased sensitivity to chronic and acute liver injury, enhanced oxidative stress, and marked impairment of hepatic functions. AAV-SLU7 infection prevented liver injury and hepatocellular dedifferentiation. Mechanistically we demonstrate a unique role for SLU7 in the preservation of HNF4α1 protein stability through its capacity to protect the liver against oxidative stress. SLU7 is herein identified as a key component of the stress granule proteome, an essential part of the cell's antioxidant machinery. CONCLUSIONS: Our results place SLU7 at the highest level of hepatocellular identity control, identifying SLU7 as a link between stress-protective mechanisms and liver differentiation. These findings emphasize the importance of the preservation of hepatic functions in the protection from liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury/genetics , Hepatocyte Nuclear Factor 4/metabolism , RNA Splicing Factors/metabolism , Acetaminophen/administration & dosage , Acetaminophen/toxicity , Animals , Carbon Tetrachloride/administration & dosage , Carbon Tetrachloride/toxicity , Cell Differentiation/genetics , Cell Line , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Hepatocyte Nuclear Factor 4/genetics , Hepatocytes/pathology , Humans , Liver/cytology , Liver/drug effects , Liver/pathology , Male , Mice , Oxidative Stress/genetics , Promoter Regions, Genetic , Proteolysis , Transcriptional Activation
16.
J Proteomics ; 230: 103984, 2021 01 06.
Article in English | MEDLINE | ID: mdl-32932008

ABSTRACT

The analysis of biological fluids to identify proteins that may indicate a disease setting, state and progression, is an increasingly explored field. Despite the expectatives created, there are several hurdles that must be solved to reach an extensive proteome coverage using mass spectrometry, mainly due to the complex composition of the matrices. In this regard, bile is specially challenging and yet, very attractive, as a proximal fluid that might provide valuable information for the management of liver and pancreas associated diseases. Proteins account for less than 5% of bile organic components and, although optimized protocols for protein extraction have been developed, only partial descriptions of bile proteome have been achieved. In this manuscript a new procedure is described that significantly improves protein recovery from rat bile, which reduces by a factor of six the sample amount required for a typical proteomics analysis. Moreover, the number of proteins reliably identified in a single nanoLC-MS/MS run from 1 µg protein was increased by three-fold. This procedure provides a valuable resource to dig deeper into the molecular composition of bile and open new avenues to identify new hallmarks of disease such as cholangiocarcinoma, hepatocellular carcinoma and pancreatic cancer for their better clinical management.


Subject(s)
Bile Duct Neoplasms , Liver Neoplasms , Animals , Bile , Bile Ducts, Intrahepatic , Proteome , Rats , Tandem Mass Spectrometry
17.
J Proteome Res ; 19(12): 4795-4807, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33155801

ABSTRACT

The Human Proteome Project (HPP) is leading the international effort to characterize the human proteome. Although the main goal of this project was first focused on the detection of missing proteins, a new challenge arose from the need to assign biological functions to the uncharacterized human proteins and describe their implications in human diseases. Not only the proteins with experimental evidence (uPE1 proteins) but also the uncharacterized missing proteins (uMPs) were the objects of study in this challenge, neXt-CP50. In this work, we developed a new bioinformatic approach to infer biological annotations for the uPE1 proteins and uMPs based on a "guilt-by-association" analysis using public RNA-Seq data sets. We used the correlation of these proteins with the well-characterized PE1 proteins to construct a network. In this way, we applied the PageRank algorithm to this network to identify the most relevant nodes, which were the biological annotations of the uncharacterized proteins. All of the generated information was stored in a database. In addition, we implemented the web application UPEFinder (https://upefinder.proteored.org) to facilitate the access to this new resource. This information is especially relevant for the researchers of the HPP who are interested in the generation and validation of new hypotheses about the functions of these proteins. Both the database and the web application are publicly available (https://github.com/ubioinformat/UPEfinder).


Subject(s)
Computational Biology , Proteome , Algorithms , Databases, Protein , Gene Expression , Humans , Proteome/genetics
18.
J Pers Med ; 10(4)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096722

ABSTRACT

The COVID-19 pandemic represents an unprecedented global challenge in this century. COVID-19 is a viral respiratory infection, yet the clinical characteristics of this infection differ in spinal cord injury patients from those observed in the general population. Cough and asthenia are the most frequent symptoms in this population. Moreover, infected spinal cord injury patients rarely present complications that require admission to an Intensive Care Unit, in contrast to the general population. Thus, there is a clear need to understand how COVID-19 affects spinal cord injury patients from a molecular perspective. Here, we employed an -omics strategy in order to identify variations in protein abundance in spinal cord injury patients with and without COVID-19. After a quantitative differential analysis using isobaric tags and mass spectrometry and a verification phase, we have found differences mainly related to coagulation and platelet activation. Our results suggest a key role of heparin in the response of spinal cord injury patients to COVID-19 infection, showing a significant correlation between these proteins and heparin dose. Although the number of patients is limited, these data may shed light on new therapeutic options to improve the management these patients and, possibly, those of the general population as well.

19.
Nat Commun ; 11(1): 5301, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067450

ABSTRACT

The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP's tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.


Subject(s)
Disease/genetics , Proteome/genetics , Human Genome Project , Humans , Proteome/chemistry , Proteome/metabolism , Proteomics
20.
Front Microbiol ; 11: 2101, 2020.
Article in English | MEDLINE | ID: mdl-33071996

ABSTRACT

Like other RNA viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in host cells, continuously modulating the molecular environment. It encodes 28 multifunctional proteins that induce an imbalance in the metabolic and proteostatic homeostasis in infected cells. Recently, proteomic approaches have allowed the evaluation of the impact of SARS-CoV-2 infection in human cells. Here, we discuss the current use of proteomics in three major application areas: (i) virus-protein interactomics, (ii) differential proteotyping to map the virus-induced changes in different cell types, and (iii) diagnostic methods for coronavirus infectious disease 2019 (COVID-19). Since the nasal cavity is one of the entry sites for SARS-CoV-2, we will also discuss the potential application of olfactory proteomics to provide novel insights into the olfactory dysfunction triggered by SARS-CoV-2 in patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL