Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jun 18.
Article in English | MEDLINE | ID: mdl-37503101

ABSTRACT

Genetic variants associated with human autoimmune diseases commonly map to non-coding control regions, particularly enhancers that function selectively in immune cells and fine-tune gene expression within a relatively narrow range of values. How such modest, cell-type-selective changes can meaningfully shape organismal disease risk remains unclear. To explore this issue, we experimentally manipulated species-conserved enhancers within the disease-associated IL2RA locus and studied accompanying changes in the progression of autoimmunity. Perturbing distinct enhancers with restricted activity in conventional T cells (Tconvs) or regulatory T cells (Tregs)-two functionally antagonistic T cell subsets-caused only modest, cell-type-selective decreases in IL2ra expression parameters. However, these same perturbations had striking and opposing effects in vivo , completely preventing or severely accelerating disease in a murine model of type 1 diabetes. Quantitative tissue imaging and computational modelling revealed that each enhancer manipulation impinged on distinct IL-2-dependent feedback circuits. These imbalances altered the intracellular signaling and intercellular communication dynamics of activated Tregs and Tconvs, producing opposing spatial domains that amplified or constrained ongoing autoimmune responses. These findings demonstrate how subtle changes in gene regulation stemming from non-coding variation can propagate across biological scales due to non-linearities in intra- and intercellular feedback circuitry, dramatically shaping disease risk at the organismal level.

2.
Nat Genet ; 54(8): 1133-1144, 2022 08.
Article in English | MEDLINE | ID: mdl-35817986

ABSTRACT

Gene regulatory networks ensure that important genes are expressed at precise levels. When gene expression is sufficiently perturbed, it can lead to disease. To understand how gene expression disruptions percolate through a network, we must first map connections between regulatory genes and their downstream targets. However, we lack comprehensive knowledge of the upstream regulators of most genes. Here, we developed an approach for systematic discovery of upstream regulators of critical immune factors-IL2RA, IL-2 and CTLA4-in primary human T cells. Then, we mapped the network of the target genes of these regulators and putative cis-regulatory elements using CRISPR perturbations, RNA-seq and ATAC-seq. These regulators form densely interconnected networks with extensive feedback loops. Furthermore, this network is enriched for immune-associated disease variants and genes. These results provide insight into how immune-associated disease genes are regulated in T cells and broader principles about the structure of human gene regulatory networks.


Subject(s)
Gene Regulatory Networks , Genes, Regulator , T-Lymphocytes , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Regulatory Networks/genetics , Humans , T-Lymphocytes/immunology
3.
J Immunol ; 208(5): 1155-1169, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35110421

ABSTRACT

CD8+ T cells are critical for the immune response to pathogens and tumors, and CD8+ T cell memory protects against repeat infections. In this study, we identify the activating transcription factor 7 interacting protein (ATF7ip) as a critical regulator of CD8+ T cell immune responses. Mice with a T cell-specific deletion of ATF7ip have a CD8+ T cell-intrinsic enhancement of Il7r expression and Il2 expression leading to enhanced effector and memory responses. Chromatin immunoprecipitation sequencing studies identified ATF7ip as a repressor of Il7r and Il2 gene expression through the deposition of the repressive histone mark H3K9me3 at the Il7r gene and Il2-Il21 intergenic region. Interestingly, ATF7ip targeted transposable elements for H3K9me3 deposition at both the IL7r locus and the Il2-Il21 intergenic region, indicating that ATF7ip silencing of transposable elements is important for regulating CD8+ T cell function. These results demonstrate a new epigenetic pathway by which IL-7R and IL-2 production are constrained in CD8+ T cells, and this may open up new avenues for modulating their production.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Interleukin-2/biosynthesis , Receptors, Interleukin-7/biosynthesis , Repressor Proteins/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Chromatin Immunoprecipitation , DNA Transposable Elements/genetics , Gene Deletion , Gene Silencing , Histones/genetics , Humans , Interleukin-2/metabolism , Listeria monocytogenes/immunology , Listeriosis/immunology , Listeriosis/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/metabolism , Repressor Proteins/genetics
4.
Nat Immunol ; 21(11): 1456-1466, 2020 11.
Article in English | MEDLINE | ID: mdl-32989329

ABSTRACT

Human regulatory T (Treg) cells are essential for immune homeostasis. The transcription factor FOXP3 maintains Treg cell identity, yet the complete set of key transcription factors that control Treg cell gene expression remains unknown. Here, we used pooled and arrayed Cas9 ribonucleoprotein screens to identify transcription factors that regulate critical proteins in primary human Treg cells under basal and proinflammatory conditions. We then generated 54,424 single-cell transcriptomes from Treg cells subjected to genetic perturbations and cytokine stimulation, which revealed distinct gene networks individually regulated by FOXP3 and PRDM1, in addition to a network coregulated by FOXO1 and IRF4. We also discovered that HIVEP2, to our knowledge not previously implicated in Treg cell function, coregulates another gene network with SATB1 and is important for Treg cell-mediated immunosuppression. By integrating CRISPR screens and single-cell RNA-sequencing profiling, we have uncovered transcriptional regulators and downstream gene networks in human Treg cells that could be targeted for immunotherapies.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transcriptome , Biomarkers , CRISPR-Cas Systems , Disease Susceptibility , Gene Knockout Techniques , Gene Targeting , Graft vs Host Disease/etiology , High-Throughput Nucleotide Sequencing , Humans
5.
Nature ; 582(7812): 416-420, 2020 06.
Article in English | MEDLINE | ID: mdl-32499641

ABSTRACT

Regulatory T (Treg) cells are required to control immune responses and maintain homeostasis, but are a significant barrier to antitumour immunity1. Conversely, Treg instability, characterized by loss of the master transcription factor Foxp3 and acquisition of proinflammatory properties2, can promote autoimmunity and/or facilitate more effective tumour immunity3,4. A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective Treg therapies for autoimmune disease and cancer. The availability of new functional genetic tools has enabled the possibility of systematic dissection of the gene regulatory programs that modulate Foxp3 expression. Here we developed a CRISPR-based pooled screening platform for phenotypes in primary mouse Treg cells and applied this technology to perform a targeted loss-of-function screen of around 500 nuclear factors to identify gene regulatory programs that promote or disrupt Foxp3 expression. We identified several modulators of Foxp3 expression, including ubiquitin-specific peptidase 22 (Usp22) and ring finger protein 20 (Rnf20). Usp22, a member of the deubiquitination module of the SAGA chromatin-modifying complex, was revealed to be a positive regulator that stabilized Foxp3 expression; whereas the screen suggested that Rnf20, an E3 ubiquitin ligase, can serve as a negative regulator of Foxp3. Treg-specific ablation of Usp22 in mice reduced Foxp3 protein levels and caused defects in their suppressive function that led to spontaneous autoimmunity but protected against tumour growth in multiple cancer models. Foxp3 destabilization in Usp22-deficient Treg cells could be rescued by ablation of Rnf20, revealing a reciprocal ubiquitin switch in Treg cells. These results reveal previously unknown modulators of Foxp3 and demonstrate a screening method that can be broadly applied to discover new targets for Treg immunotherapies for cancer and autoimmune disease.


Subject(s)
CRISPR-Cas Systems , Forkhead Transcription Factors/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Autoimmunity/immunology , Cells, Cultured , Forkhead Transcription Factors/biosynthesis , Gene Editing , Gene Expression Regulation , Humans , Immunotherapy , Male , Mice , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/prevention & control , Protein Stability , Reproducibility of Results , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/metabolism
6.
J Clin Invest ; 129(11): 4676-4681, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31369399

ABSTRACT

While improvements in genetic analysis have greatly enhanced our understanding of the mechanisms behind pancreatitis, it continues to afflict many families for whom the hereditary factors remain unknown. Recent evaluation of a patient with a strong family history of pancreatitis sparked us to reexamine a large kindred originally reported over 50 years ago with an autosomal dominant inheritance pattern of chronic pancreatitis, diabetes and pancreatic adenocarcinoma. Whole exome sequencing analysis identified a rare missense mutation in the gene encoding pancreas-specific protease Elastase 3B (CELA3B) that cosegregates with disease. Studies of the mutant protein in vitro, in cell lines and in CRISPR-Cas9 engineered mice indicate that this mutation causes translational upregulation of CELA3B, which upon secretion and activation by trypsin leads to uncontrolled proteolysis and recurrent pancreatitis. Although lesions in several other pancreatitic proteases have been previously linked to hereditary pancreatitis, this is the first known instance of a mutation in CELA3B and a defect in translational control contributing to this disease.


Subject(s)
Adenocarcinoma/genetics , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Mutation , Neoplasm Proteins/genetics , Pancreatic Elastase/genetics , Pancreatic Neoplasms/genetics , Pancreatitis/genetics , Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Animals , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Genetic Diseases, Inborn/enzymology , Genetic Diseases, Inborn/pathology , Humans , Mice , Neoplasm Proteins/metabolism , Pancreatic Elastase/biosynthesis , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Pancreatitis/enzymology , Pancreatitis/pathology , Up-Regulation , Exome Sequencing , Pancreatic Neoplasms
7.
J Exp Med ; 216(9): 2024-2037, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31217192

ABSTRACT

T helper 17 cells (Th17) are critical for fighting infections at mucosal surfaces; however, they have also been found to contribute to the pathogenesis of multiple autoimmune diseases and have been targeted therapeutically. Due to the role of Th17 cells in autoimmune pathogenesis, it is important to understand the factors that control Th17 development. Here we identify the activating transcription factor 7 interacting protein (ATF7ip) as a critical regulator of Th17 differentiation. Mice with T cell-specific deletion of Atf7ip have impaired Th17 differentiation secondary to the aberrant overproduction of IL-2 with T cell receptor (TCR) stimulation and are resistant to colitis in vivo. ChIP-seq studies identified ATF7ip as an inhibitor of Il2 gene expression through the deposition of the repressive histone mark H3K9me3 in the Il2-Il21 intergenic region. These results demonstrate a new epigenetic pathway by which IL-2 production is constrained, and this may open up new avenues for modulating its production.


Subject(s)
Epigenesis, Genetic , Interleukin-2/metabolism , Repressor Proteins/metabolism , Th17 Cells/immunology , Animals , Cell Differentiation , Colitis/immunology , Colitis/pathology , DNA, Intergenic/genetics , Histones/metabolism , Lysine/metabolism , Methylation , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Repressor Proteins/deficiency , Th17 Cells/cytology
8.
Commun Biol ; 2: 70, 2019.
Article in English | MEDLINE | ID: mdl-30793048

ABSTRACT

A persistent concern with CRISPR-Cas9 gene editing has been the potential to generate mutations at off-target genomic sites. While CRISPR-engineering mice to delete a ~360 bp intronic enhancer, here we discovered a founder line that had marked immune dysregulation caused by a 24 kb tandem duplication of the sequence adjacent to the on-target deletion. Our results suggest unintended repair of on-target genomic cuts can cause pathogenic "bystander" mutations that escape detection by routine targeted genotyping assays.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Interleukin-2 Receptor alpha Subunit/genetics , Mutation , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes/immunology , Animals , Base Sequence , Cells, Cultured , DNA Damage , DNA Repair , Gene Duplication , Gene Expression Regulation/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Mice, Inbred NOD , T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/metabolism
9.
Nat Immunol ; 15(3): 258-65, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24464130

ABSTRACT

The maintenance of immunological tolerance requires the deletion of self-reactive T cells in the thymus. The expression of genes encoding tissue-specific antigens (TSAs) by thymic epithelial cells is critical for this process and depends on activity of the transcriptional regulator Aire; however, the molecular mechanisms Aire uses to target loci encoding TSAs are unknown. Here we identified two Aire-interacting proteins known to be involved in gene repression, ATF7ip and MBD1, that were required for Aire's targeting of loci encoding TSAs. Moreover, Mbd1(-/-) mice developed pathological autoimmunity and had a defect in Aire-dependent thymic expression of genes encoding TSAs, which underscores the importance of Aire's interaction with the ATF7ip-MBD1 protein complex in maintaining central tolerance.


Subject(s)
Central Tolerance/immunology , DNA-Binding Proteins/immunology , Gene Expression Regulation/immunology , Immune Tolerance , Repressor Proteins/immunology , Transcription Factors/immunology , Animals , Autoantigens/immunology , Central Tolerance/genetics , DNA-Binding Proteins/genetics , Flow Cytometry , HEK293 Cells , Humans , Immunoblotting , Immunoprecipitation , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Protein Binding , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transfection , Two-Hybrid System Techniques , AIRE Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...