Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891854

ABSTRACT

MicroRNAs (miRNAs) regulate approximately one-third of all human genes. The dysregulation of miRNAs has been implicated in the development of numerous human diseases, including cancers. In our investigation focusing on altering specific miRNA expression in human pancreatic cancer cells, we encountered an interesting finding. While two expression vector designs effectively enhanced miR-708 levels, they were unable to elevate mature forms of miR-29b, -1290, -2467, and -6831 in pancreatic cancer cell lines. This finding was also observed in a panel of other non-pancreatic cancer cell lines, suggesting that miRNA processing efficiency was cell line specific. Using a step-by-step approach in each step of miRNA processing, we ruled out alternative strand selection by the RISC complex and transcriptional interference at the primary miRNA (pri-miRNA) level. DROSHA processing and pri-miRNA export from the nucleus also appeared to be occurring normally. We observed precursor (pre-miRNA) accumulation only in cell lines where mature miRNA expression was not achieved, suggesting that the block was occurring at the pre-miRNA stage. To further confirm this, synthetic pre-miRNA mimics that bypass DICER processing were processed into mature miRNAs in all cases. This study has demonstrated the distinct behaviours of different miRNAs with the same vector in the same cell line, the same miRNA between the two vector designs, and with the same miRNA across different cell lines. We identified a stable vector pre-miRNA processing block. Our findings on the structural and sequence differences between successful and non-successful vector designs could help to inform future chimeric miRNA design strategies and act as a guide to other researchers on the intricate processing dynamics that can impact vector efficiency. Our research confirms the potential of miRNA mimics to surmount some of these complexities.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , RNA Processing, Post-Transcriptional , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , RNA Processing, Post-Transcriptional/genetics , Cell Line, Tumor , Ribonuclease III/metabolism , Ribonuclease III/genetics , Gene Expression Regulation, Neoplastic , Transfection , RNA Precursors/genetics , RNA Precursors/metabolism , Animals
2.
Nat Commun ; 12(1): 5638, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561441

ABSTRACT

In bacteria, ribosome kinetics are considered rate-limiting for protein synthesis and cell growth. Enhanced ribosome kinetics may augment bacterial growth and biomanufacturing through improvements to overall protein yield, but whether this can be achieved by ribosome-specific modifications remains unknown. Here, we evolve 16S ribosomal RNAs (rRNAs) from Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae towards enhanced protein synthesis rates. We find that rRNA sequence origin significantly impacted evolutionary trajectory and generated rRNA mutants with augmented protein synthesis rates in both natural and engineered contexts, including the incorporation of noncanonical amino acids. Moreover, discovered consensus mutations can be ported onto phylogenetically divergent rRNAs, imparting improved translational activities. Finally, we show that increased translation rates in vivo coincide with only moderately reduced translational fidelity, but do not enhance bacterial population growth. Together, these findings provide a versatile platform for development of unnatural ribosomal functions in vivo.


Subject(s)
Protein Biosynthesis , RNA, Ribosomal/metabolism , Recombinant Proteins/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Base Sequence , Directed Molecular Evolution/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Kinetics , Mass Spectrometry/methods , Models, Molecular , Mutation , Nucleic Acid Conformation , Proteome/metabolism , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Ribosomal Proteins/genetics , Ribosomes/genetics
3.
Epidemics ; 37: 100487, 2021 12.
Article in English | MEDLINE | ID: mdl-34425301

ABSTRACT

In the United States, schools closed in March 2020 due to COVID-19 and began reopening in August 2020, despite continuing transmission of SARS-CoV-2. In states where in-person instruction resumed at that time, two major unknowns were the capacity at which schools would operate, which depended on the proportion of families opting for remote instruction, and adherence to face-mask requirements in schools, which depended on cooperation from students and enforcement by schools. To determine the impact of these conditions on the statewide burden of COVID-19 in Indiana, we used an agent-based model calibrated to and validated against multiple data types. Using this model, we quantified the burden of COVID-19 on K-12 students, teachers, their families, and the general population under alternative scenarios spanning three levels of school operating capacity (50 %, 75 %, and 100 %) and three levels of face-mask adherence in schools (50 %, 75 %, and 100 %). Under a scenario in which schools operated remotely, we projected 45,579 (95 % CrI: 14,109-132,546) infections and 790 (95 % CrI: 176-1680) deaths statewide between August 24 and December 31. Reopening at 100 % capacity with 50 % face-mask adherence in schools resulted in a proportional increase of 42.9 (95 % CrI: 41.3-44.3) and 9.2 (95 % CrI: 8.9-9.5) times that number of infections and deaths, respectively. In contrast, our results showed that at 50 % capacity with 100 % face-mask adherence, the number of infections and deaths were 22 % (95 % CrI: 16 %-28 %) and 11 % (95 % CrI: 5 %-18 %) higher than the scenario in which schools operated remotely. Within this range of possibilities, we found that high levels of school operating capacity (80-95 %) and intermediate levels of face-mask adherence (40-70 %) resulted in model behavior most consistent with observed data. Together, these results underscore the importance of precautions taken in schools for the benefit of their communities.


Subject(s)
COVID-19 , Humans , Indiana , Masks , SARS-CoV-2 , Schools , United States/epidemiology
4.
Trends Biotechnol ; 39(1): 59-71, 2021 01.
Article in English | MEDLINE | ID: mdl-32586633

ABSTRACT

Synthetic biology strives to reliably control cellular behavior, typically in the form of user-designed interactions of biological components to produce a predetermined output. Engineered circuit components are frequently derived from natural sources and are therefore often hampered by inadvertent interactions with host machinery, most notably within the host central dogma. Reliable and predictable gene circuits require the targeted reduction or elimination of these undesirable interactions to mitigate negative consequences on host fitness and develop context-independent bioactivities. Here, we review recent advances in biological orthogonalization, namely the insulation of researcher-dictated bioactivities from host processes, with a focus on systematic developments that may culminate in the creation of an orthogonal central dogma and novel cellular functions.


Subject(s)
Gene Regulatory Networks , Synthetic Biology , Animals , Humans , Models, Theoretical , Synthetic Biology/trends
5.
Metallomics ; 12(11): 1729-1734, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33029604

ABSTRACT

The modern world has seen exposure of bacterial communities to toxic metals at selective levels. This manifests itself both intentionally, through medicines and un-intentionally through waste streams. There is growing concern that selective exposure to metals may be linked to microbial resistance to antibiotics. For a microbe to become resistant to a specific metal it must first come in contact with it. The transition metal copper has the ability to enter bacterial cells without need for a copper specific uptake mechanism. Copper is commonly used as an antimicrobial in the healthcare industry, consumer products and as a growth promoter of livestock in the agricultural sector. Here we report a study into the uptake of different organic and inorganic sources of copper. A whole-cell bacterial biosensor was developed to quantify the specific uptake of copper from various sources. Furthermore, a cell-free sensor was utilized to investigate the response to copper sources when uptake is eliminated as a factor. The data within suggest inorganic copper to have greatly reduced uptake compared to organic sources and that there is significant difference between copper oxides, Cu2O and CuO.


Subject(s)
Biosensing Techniques , Copper/analysis , Organic Chemicals/analysis , Cell-Free System
6.
Biotechnol Bioeng ; 117(8): 2489-2503, 2020 08.
Article in English | MEDLINE | ID: mdl-32346860

ABSTRACT

RNA sequencing (RNASeq) has been widely used to associate alterations in Chinese hamster ovary (CHO) cell gene expression with bioprocess phenotypes; however, alternative messenger RNA (mRNA) splicing, has thus far, received little attention. In this study, we utilized RNASeq for transcriptomic analysis of a monoclonal antibody (mAb) producing CHO K1 cell line subjected to a temperature shift. More than 2,465 instances of differential splicing were observed 24 hr after the reduction of cell culture temperature. A total of 1,197 of these alternative splicing events were identified in genes where no changes in abundance were detected by standard differential expression analysis. Ten examples of alternative splicing were selected for independent validation using quantitative polymerase chain reaction in the mAb-producing CHO K1 cell line used for RNASeq and a further two CHO K1 cell lines. This analysis provided evidence that exon skipping and mutually exclusive splicing events occur in genes linked to the cellular response to changes in temperature and mitochondrial function. While further work is required to determine the impact of these changes in mRNA sequence on cellular phenotype, this study demonstrates that alternative splicing analysis can be utilized to gain a deeper understanding of post-transcriptional regulation in CHO cells during biopharmaceutical production.


Subject(s)
Alternative Splicing , RNA, Messenger , Transcriptome , Alternative Splicing/genetics , Alternative Splicing/physiology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , CHO Cells , Cold Temperature , Cricetinae , Cricetulus , Gene Expression Profiling , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Transcriptome/genetics , Transcriptome/physiology
7.
Trends Biotechnol ; 38(2): 217-230, 2020 02.
Article in English | MEDLINE | ID: mdl-31421856

ABSTRACT

The circular RNA renaissance is upon us. Recent reports demonstrate applications of synthetic circular RNA molecules as gene therapies and in the production of biologics from cell-based expression systems. Circular RNAs are covalently closed loop RNA species that are formed naturally through noncolinear splicing of pre-mRNA. Although once thought to be noncoding artefacts from splicing errors, it is now accepted that circular RNAs are abundant and have diverse functions in gene regulation and protein coding in eukaryotes. Numerous reports have investigated circular RNAs in various diseases, but the promise of synthetic circular RNAs in the production of recombinant proteins and as RNA-based therapies is only now coming into focus. This review highlights reported uses of synthetic circular RNAs and describes methods for generating these molecules.


Subject(s)
Cell Engineering/methods , Genetic Therapy/methods , Mammals/genetics , RNA, Circular , Animals , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Gene Expression Regulation , Humans , Introns , RNA Stability , RNA, Circular/chemistry , RNA, Circular/metabolism
8.
Metab Eng ; 52: 284-292, 2019 03.
Article in English | MEDLINE | ID: mdl-30615942

ABSTRACT

Recent success in demonstrating the translation of circular RNA open reading frames or circular mRNA, may offer a new avenue for improving recombinant protein production from cell and cell-free expression platforms. Initiation and termination are two rate limiting steps of translation. Circular RNA as a class of RNA is defined by covalent joining of terminal ends to give a closed loop structure. By encoding a gene lacking a stop codon on a circular RNA molecule an infinite open reading frame is generated permitting continuously translating circular mRNA (CTC mRNA). CTC mRNAs have shown promise in enhancing the production of multimeric polyproteins in bacterial cell-free expression systems. Problems arise when homogenous, functional post-translationally modified protein is required. To produce post-translationally modified, secreted protein from an CTC mRNA we investigated co-translational cleavage of nascent polypeptide chains by incorporating a 2 A "self-cleavage" peptide motif. Using a model recombinant human glycoprotein Erythropoietin (EPO) we demonstrate for the first time the ability to produce secreted protein from an infinite circular mRNA in live mammalian cells. Both cell-specific and volumetric productivity were improved by using circular mRNAs. This study pioneers the potential of recombinant protein production from CTC mRNA in mammalian cells.


Subject(s)
RNA/genetics , Recombinant Proteins/biosynthesis , Animals , CHO Cells , Cell-Free System , Codon, Terminator/genetics , Cricetinae , Cricetulus , Erythropoietin/biosynthesis , Erythropoietin/genetics , Glycosylation , Humans , Metabolic Engineering , Open Reading Frames/genetics , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/chemistry , Peptides/chemistry , Protein Processing, Post-Translational , RNA, Circular , Recombinant Proteins/analysis
9.
Biotechnol J ; 14(3): e1800219, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29989353

ABSTRACT

With the ability to affect multiple genes and fundamental pathways simultaneously, miRNA engineering of Chinese Hamster Ovary (CHO) cells has significant advantages over single gene expression or repression. Tight control of these molecular triggers is desirable as it could in theory allow on/off or even tunable regulation of desirable cellular phenotypes. The present study investigated the potential of employing a tetracycline inducible (TET-On) system for conditional knockdown of specific miRNAs but encountered several challenges. The authors show a significant reduction in cell proliferation and culture viability when maintained in media supplemented with the TET-On induction agent Doxycycline at concentrations commonly reported. Calculation of a mature miRNA and miRNA sponge mRNA copy number demonstrates that leaky basal transgene expression in the un-induced state, is sufficient for significant miRNA knockdown. This work highlights challenges of the TET-On inducible expression system for controlled manipulation of endogenous miRNAs with two examples; miR-378 and miR-455. The authors suggest a solution involving isolation of highly inducible clones and use a single cell analysis platform to demonstrate the heterogeneity of basal expression and inducibility. Finally, the authors describe numerous strategies to minimize leaky transgene expression and alterations to current miRNA sponge design.


Subject(s)
Gene Expression/genetics , MicroRNAs/genetics , Tetracycline/pharmacology , Animals , CHO Cells , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cricetulus , Doxycycline/pharmacology , Gene Expression/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Genetic Vectors/genetics , Transgenes/genetics
10.
Biotechnol Lett ; 41(2): 231-239, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30506229

ABSTRACT

The impact of local structure on mRNA translation is not well-defined pertaining to the 5' UTR. Reports suggest structural remodelling of the 5' UTR can significantly influence mRNA translation both in cis and trans however a new layer of complexity has been applied to this model with the now known reversible post-transcriptional chemical modification of RNA. N6-methyladenosine (m6A) is the most abundant internal base modification in mammalian mRNA. It has been reported that mRNAs harbouring m6A motifs in their 5' UTR have improved translation efficiency. The present study evaluated the addition of putative m6A motifs to the 5' UTR of a model recombinant human therapeutic glycoprotein, Erythropoietin (EPO), in a direct comparison with an A to T mutant and a no adenosine control. The m6A construct yielded significantly improved EPO titer in transient batch culture over no adenosine and m6T controls by 2.84 and 2.61-fold respectively. This study highlights that refinement of transgene RNA elements can yield significant improvements to protein titer.


Subject(s)
5' Untranslated Regions , Erythropoietin/genetics , RNA, Messenger/metabolism , Recombinant Proteins/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Batch Cell Culture Techniques , CHO Cells , Cricetulus , Erythropoietin/metabolism , Mutation , Protein Biosynthesis , RNA, Messenger/genetics , Recombinant Proteins/genetics , Synthetic Biology/methods
11.
J Biotechnol ; 288: 30-40, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30389639

ABSTRACT

miRNAs are potent molecular regulators of cellular behaviour. The manipulation of these small non-coding RNAs has been used to enhance industrially relevant phenotypes in Chinese Hamster Ovary (CHO) cells. We investigated the stable depletion of six miRNAs; miR-204-5p, 338-3p, 378-3p, 409-3p, 455-3p and 505-3p, robustly associated with cell growth rate from a previous profiling study. Inhibition of endogenous miR-378-3p function by miRNA-sponge-decoy improved peak cell density by 59%. Quantitative label free LC-MS/MS proteomic analysis of the fractionated cell cultures at day 4 and 8 of batch culture found 216 cytosolic and 114 membrane-associated proteins differentially expressed with stable miR-378-3p depletion. qRT-PCR of 8 genes; Clic4, Hnrnpa1, Prdx1, Actn4, Usp14, Srxn1, Canx and Gnb1, with unidirectional differential protein expression over the two time points of analysis was carried out. In-silico predictive algorithms; TargetScan and miRDB, were used to decipher possible direct targets of miR-378-3p. The Ubiquitin carboxyl-terminal hydrolase 14 (Usp14) protein was identified in the cytosolic fractions at both timepoints as differentially expressed with an increased abundance of 1.58-fold in the miR-378-3p depleted cells on day 8. Usp14 is a deubiquitinase (DUB) with previous reports of its up-regulation leading to increased proliferation of cancer cells. Overexpression of Usp14 in CHO cells had significant effects on cell growth supporting a role for Usp14 in the increased peak cell density seen with miR-378-3p depletion. This study highlights miR-378-3p as a novel engineering candidate for improving CHO cell growth. The use of subcellular fractionation also improved proteome coverage in the identification of novel miRNA targets.


Subject(s)
MicroRNAs , Ubiquitin Thiolesterase , Animals , CHO Cells , Cricetulus , Proteomics
12.
Data Brief ; 21: 2679-2688, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30761351

ABSTRACT

The proteomic data presented in this article provide supporting information to the related research article "Depletion of endogenous miRNA-378-3p increases peak cell density of CHO DP12 cells and is correlated with elevated levels of Ubiquitin Carboxyl-Terminal Hydrolase 14" (Costello et al., in press) [1]. Control and microRNA-378 depleted CHO DP12 cells were profiled using label-free quantitative proteomic profiling. CHO DP12 cells were collected on day 4 and 8 of batch culture, subcellular proteomic enrichment was performed, and subsequent fractions were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Here we provide the complete proteomic dataset of proteins significantly differentially expressed by greater than 1.25-fold change in abundance between control and miR-378 depleted CHO DP12 cells, and the lists of all identified proteins for each condition.

13.
Methods Mol Biol ; 1603: 87-100, 2017.
Article in English | MEDLINE | ID: mdl-28493125

ABSTRACT

MicroRNAs (miRNAs) are small, noncoding RNAs of about 22 nucleotides in length and have proven to be useful targets for genetic modifications for desirable phenotype in the biotech industry. The use of constitutively expressed "miRNA sponge" vectors in which multiple, tandem miRNA binding sites containing transcripts are transcriptionally regulated by a constitutive promoter for down regulating the levels of endogenous microRNAs in Chinese hamster ovary (CHO) cells has shown to be more advantageous than using synthetic antisense oligonucleotides. The application of miRNA sponges in biotechnological processes, however, could be more effective, if expression of miRNA sponges could be tuned. In this chapter, we present a method for the generation of stable CHO cell lines expressing a TET-ON-SanDI-miRNA-sponge that is in theory expressed only in the presence of an inducer.


Subject(s)
Deoxyribonucleases, Type II Site-Specific/metabolism , Gene Expression Regulation/drug effects , Gene Knockdown Techniques/methods , Genetic Vectors/administration & dosage , MicroRNAs/antagonists & inhibitors , Tetracycline/pharmacology , Animals , CHO Cells , Cell Culture Techniques/methods , Cricetinae , Cricetulus , Deoxyribonucleases, Type II Site-Specific/genetics , MicroRNAs/genetics , Protein Synthesis Inhibitors/pharmacology
14.
Metab Eng ; 41: 11-22, 2017 05.
Article in English | MEDLINE | ID: mdl-28188893

ABSTRACT

Recent sequencing of the Chinese hamster ovary (CHO) cell and Chinese hamster genomes has dramatically advanced our ability to understand the biology of these mammalian cell factories. In this study, we focus on the powerhouse of the CHO cell, the mitochondrion. Utilizing a high-resolution next generation sequencing approach we sequenced the Chinese hamster mitochondrial genome for the first time and surveyed the mutational landscape of CHO cell mitochondrial DNA (mtDNA). Depths of coverage ranging from ~3,319X to 8,056X enabled accurate identification of low frequency mutations (>1%), revealing that mtDNA heteroplasmy is widespread in CHO cells. A total of 197 variants at 130 individual nucleotide positions were identified across a panel of 22 cell lines with 81% of variants occurring at an allele frequency of between 1% and 99%. 89% of the heteroplasmic mutations identified were cell line specific with the majority of shared heteroplasmic SNPs and INDELs detected in clones from 2 cell line development projects originating from the same host cell line. The frequency of common predicted loss of function mutations varied significantly amongst the clones indicating that heteroplasmic mtDNA variation could lead to a continuous range of phenotypes and play a role in cell to cell, production run to production run and indeed clone to clone variation in CHO cell metabolism. Experiments that integrate mtDNA sequencing with metabolic flux analysis and metabolomics have the potential to improve cell line selection and enhance CHO cell metabolic phenotypes for biopharmaceutical manufacturing through rational mitochondrial genome engineering.


Subject(s)
Alleles , Gene Frequency , Genome, Mitochondrial , High-Throughput Nucleotide Sequencing , INDEL Mutation , Polymorphism, Single Nucleotide , Animals , CHO Cells , Cricetinae , Cricetulus
SELECTION OF CITATIONS
SEARCH DETAIL
...