Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 120
1.
ACS Pharmacol Transl Sci ; 7(4): 1191-1194, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38633594

Traditional pharmacology and medicinal and organic chemistry teaching often rely on the trusted textbook visuals. However, students may struggle to grasp mechanisms that appear too complex. Because the pandemic has mandated the majority of educators to use new techniques and innovative technology in their communication approaches with students, we offer several digital strategies for educators to explore and/or to enhance student learning. These technology-infused strategies are drawn from our cross-country (Singapore and France) teaching and research experiences and expertise.

3.
Lancet Diabetes Endocrinol ; 12(5): 339-349, 2024 May.
Article En | MEDLINE | ID: mdl-38663950

BACKGROUND: Experimental studies have suggested potential detrimental effects of emulsifiers on gut microbiota, inflammation, and metabolic perturbations. We aimed to investigate the associations between exposures to food additive emulsifiers and the risk of type 2 diabetes in a large prospective cohort of French adults. METHODS: We analysed data from 104 139 adults enrolled in the French NutriNet-Santé prospective cohort study from May 1, 2009, to April 26, 2023; 82 456 (79·2%) were female and the mean age was 42·7 years (SD 14·5). Dietary intakes were assessed with three 24 h dietary records collected over three non-consecutive days, every 6 months. Exposure to additive emulsifiers was evaluated through multiple food composition databases and ad-hoc laboratory assays. Associations between cumulative time-dependent exposures to food additive emulsifiers and the risk of type 2 diabetes were characterised with multivariable proportional hazards Cox models adjusted for known risk factors. The NutriNet-Santé study is registered at ClinicalTrials.gov (NCT03335644). FINDINGS: Of 104 139 participants, 1056 were diagnosed with type 2 diabetes during follow-up (mean follow-up duration 6·8 years [SD 3·7]). Intakes of the following emulsifiers were associated with an increased risk of type 2 diabetes: total carrageenans (hazard ratio [HR] 1·03 [95% CI 1·01-1·05] per increment of 100 mg per day, p<0·0001), carrageenans gum (E407; HR 1·03 [1·01-1·05] per increment of 100 mg per day, p<0·0001), tripotassium phosphate (E340; HR 1·15 [1·02-1·31] per increment of 500 mg per day, p=0·023), acetyl tartaric acid esters of monoglycerides and diglycerides of fatty acids (E472e; HR 1·04 [1·00-1·08] per increment of 100 mg per day, p=0·042), sodium citrate (E331; HR 1·04 [1·01-1·07] per increment of 500 mg per day, p=0·0080), guar gum (E412; HR 1·11 [1·06-1·17] per increment of 500 mg per day, p<0·0001), gum arabic (E414; HR 1·03 [1·01-1·05] per increment of 1000 mg per day, p=0·013), and xanthan gum (E415, HR 1·08 [1·02-1·14] per increment of 500 mg per day, p=0·013). INTERPRETATION: We found direct associations between the risk of type 2 diabetes and exposures to various food additive emulsifiers widely used in industrial foods, in a large prospective cohort of French adults. Further research is needed to prompt re-evaluation of regulations governing the use of additive emulsifiers in the food industry for better consumer protection. FUNDING: European Research Council, French National Cancer Institute, French Ministry of Health, IdEx Université de Paris, and Bettencourt-Schueller Foundation.


Diabetes Mellitus, Type 2 , Emulsifying Agents , Food Additives , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/chemically induced , Female , Male , Adult , Prospective Studies , Food Additives/adverse effects , Middle Aged , Emulsifying Agents/adverse effects , Risk Factors , France/epidemiology , Cohort Studies
4.
Front Toxicol ; 6: 1285768, 2024.
Article En | MEDLINE | ID: mdl-38523647

Introduction: The Adverse Outcome Pathway (AOP) concept facilitates rapid hazard assessment for human health risks. AOPs are constantly evolving, their number is growing, and they are referenced in the AOP-Wiki database, which is supported by the OECD. Here, we present a study that aims at identifying well-defined biological areas, as well as gaps within the AOP-Wiki for future research needs. It does not intend to provide a systematic and comprehensive summary of the available literature on AOPs but summarizes and maps biological knowledge and diseases represented by the already developed AOPs (with OECD endorsed status or under validation). Methods: Knowledge from the AOP-Wiki database were extracted and prepared for analysis using a multi-step procedure. An automatic mapping of the existing information on AOPs (i.e., genes/proteins and diseases) was performed using bioinformatics tools (i.e., overrepresentation analysis using Gene Ontology and DisGeNET), allowing both the classification of AOPs and the development of AOP networks (AOPN). Results: AOPs related to diseases of the genitourinary system, neoplasms and developmental anomalies are the most frequently investigated on the AOP-Wiki. An evaluation of the three priority cases (i.e., immunotoxicity and non-genotoxic carcinogenesis, endocrine and metabolic disruption, and developmental and adult neurotoxicity) of the EU-funded PARC project (Partnership for the Risk Assessment of Chemicals) are presented. These were used to highlight under- and over-represented adverse outcomes and to identify and prioritize gaps for further research. Discussion: These results contribute to a more comprehensive understanding of the adverse effects associated with the molecular events in AOPs, and aid in refining risk assessment for stressors and mitigation strategies. Moreover, the FAIRness (i.e., data which meets principles of findability, accessibility, interoperability, and reusability (FAIR)) of the AOPs appears to be an important consideration for further development.

5.
PLoS Med ; 21(2): e1004338, 2024 Feb.
Article En | MEDLINE | ID: mdl-38349899

BACKGROUND: Emulsifiers are widely used food additives in industrially processed foods to improve texture and enhance shelf-life. Experimental research suggests deleterious effects of emulsifiers on the intestinal microbiota and the metabolome, leading to chronic inflammation and increasing susceptibility to carcinogenesis. However, human epidemiological evidence investigating their association with cancer is nonexistent. This study aimed to assess associations between food additive emulsifiers and cancer risk in a large population-based prospective cohort. METHODS AND FINDINGS: This study included 92,000 adults of the French NutriNet-Santé cohort without prevalent cancer at enrolment (44.5 y [SD: 14.5], 78.8% female, 2009 to 2021). They were followed for an average of 6.7 years [SD: 2.2]. Food additive emulsifier intakes were estimated for participants who provided at least 3 repeated 24-h dietary records linked to comprehensive, brand-specific food composition databases on food additives. Multivariable Cox regressions were conducted to estimate associations between emulsifiers and cancer incidence. Overall, 2,604 incident cancer cases were diagnosed during follow-up (including 750 breast, 322 prostate, and 207 colorectal cancers). Higher intakes of mono- and diglycerides of fatty acids (FAs) (E471) were associated with higher risks of overall cancer (HR high vs. low category = 1.15; 95% CI [1.04, 1.27], p-trend = 0.01), breast cancer (HR = 1.24; 95% CI [1.03, 1.51], p-trend = 0.04), and prostate cancer (HR = 1.46; 95% CI [1.09, 1.97], p-trend = 0.02). In addition, associations with breast cancer risk were observed for higher intakes of total carrageenans (E407 and E407a) (HR = 1.32; 95% CI [1.09, 1.60], p-trend = 0.009) and carrageenan (E407) (HR = 1.28; 95% CI [1.06, 1.56], p-trend = 0.01). No association was detected between any of the emulsifiers and colorectal cancer risk. Several associations with other emulsifiers were observed but were not robust throughout sensitivity analyses. Main limitations include possible exposure measurement errors in emulsifiers intake and potential residual confounding linked to the observational design. CONCLUSIONS: In this large prospective cohort, we observed associations between higher intakes of carrageenans and mono- and diglycerides of fatty acids with overall, breast and prostate cancer risk. These results need replication in other populations. They provide new epidemiological evidence on the role of emulsifiers in cancer risk. TRIAL REGISTRATION: ClinicalTrials.gov NCT03335644.


Breast Neoplasms , Prostatic Neoplasms , Adult , Male , Humans , Diet , Risk Factors , Prospective Studies , Food Additives/adverse effects , Diglycerides , Fatty Acids
6.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220510, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38310928

Organisms adapt to their environment through different pathways. In vertebrates, xenobiotics are detected, metabolized and eliminated through the inducible xenobiotic-metabolizing pathways (XMP) which can also generate reactive toxic intermediates. In this review, we will discuss the impacts of the chemical exposome complexity on the balance between detoxication and side effects. There is a large discrepancy between the limited number of proteins involved in these pathways (few dozens) and the diversity and complexity of the chemical exposome (tens of thousands of chemicals). Several XMP proteins have a low specificity which allows them to bind and/or metabolize a large number of chemicals. This leads to undesired consequences, such as cross-inhibition, inefficient metabolism, release of toxic intermediates, etc. Furthermore, several XMP proteins have endogenous functions that may be disrupted upon exposure to exogenous chemicals. The gut microbiome produces a very large number of metabolites that enter the body and are part of the chemical exposome. It can metabolize xenobiotics and either eliminate them or lead to toxic derivatives. The complex interactions between chemicals of different origins will be illustrated by the diverse roles of the aryl hydrocarbon receptor which binds and transduces the signals of a large number of xenobiotics, microbiome metabolites, dietary chemicals and endogenous compounds. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Exposome , Gastrointestinal Microbiome , Animals , Xenobiotics/chemistry , Xenobiotics/metabolism , Xenobiotics/toxicity , Inactivation, Metabolic , Receptors, Aryl Hydrocarbon/metabolism
7.
Chemosphere ; 349: 140883, 2024 Feb.
Article En | MEDLINE | ID: mdl-38092172

The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. This disease encompasses several stages, from steatosis to steatohepatitis and, eventually, to fibrosis and cirrhosis. Exposure to environmental contaminants is one of the risk factors and an increasing amount of evidence points to a role for endocrine disrupting compounds (EDCs). This study assesses the impact of selected EDCs on the formation of lipid droplets, the marker for steatosis in a hepatic model. The mechanisms underlying this effect are then explored. Ten compounds were selected according to their obesogenic properties: bisphenol A, F and S, butyl-paraben, cadmium chloride, p,p'-DDE, DBP, DEHP, PFOA and PFOS. Using a 2D or 3D model, HepaRG cells were exposed to the compounds with or without fatty acid supplementation. Then, the formation of lipid droplets was quantified by an automated fluorescence-based method. The expression of genes and proteins involved in lipid metabolism and the impact on cellular respiration was analyzed. The formation of lipid droplets, which is revealed or enhanced by oleic acid supplementation, was most effectively induced by p,p'-DDE and DEHP. Experiments employing either 2D or 3D culture conditions gave similar results. Both compounds induced the expression of PLIN2. p,p'-DDE also appears to act by decreasing in fatty acid oxidation. Some EDCs were able to induce the formation of lipid droplets, in HepaRG cells, an effect which was increased after supplementation of the cells with oleic acid. A full understanding of the mechanisms of these effects will require further investigation. The novel automated detection method described here may also be useful in the future as a regulatory test for EDC risk assessment.


Diethylhexyl Phthalate , Endocrine Disruptors , Fatty Liver , Humans , Lipid Metabolism , Fatty Acids/metabolism , Endocrine Disruptors/metabolism , Oleic Acid/toxicity , Oleic Acid/metabolism , Dichlorodiphenyl Dichloroethylene/metabolism , Diethylhexyl Phthalate/toxicity , Fatty Liver/metabolism , Hepatocytes
8.
Environ Sci Pollut Res Int ; 31(5): 6587-6596, 2024 Jan.
Article En | MEDLINE | ID: mdl-37966636

The adverse outcome pathway (AOP) has been conceptualized in 2010 as an analytical construct to describe a sequential chain of causal links between key events, from a molecular initiating event leading to an adverse outcome (AO), considering several levels of biological organization. An AOP aims to identify and organize available knowledge about toxic effects of chemicals and drugs, either in ecotoxicology or toxicology, and it can be helpful in both basic and applied research and serve as a decision-making tool in support of regulatory risk assessment. The AOP concept has evolved since its introduction, and recent research in toxicology, based on integrative systems biology and artificial intelligence, gave it a new dimension. This innovative in silico strategy can help to decipher mechanisms of action and AOP and offers new perspectives in AOP development. However, to date, this strategy has not yet been applied to ecotoxicology. In this context, the main objective of this short article is to discuss the relevance and feasibility of transferring this strategy to ecotoxicology. One of the challenges to be discussed is the level of organisation that is relevant to address for the AO (population/community). This strategy also offers many advantages that could be fruitful in ecotoxicology and overcome the lack of time, such as the rapid identification of data available at a time t, or the identification of "data gaps". Finally, this article proposes a step forward with suggested priority topics in ecotoxicology that could benefit from this strategy.


Adverse Outcome Pathways , Ecotoxicology , Ecotoxicology/methods , Artificial Intelligence , Risk Assessment/methods
9.
Environ Int ; 180: 108219, 2023 10.
Article En | MEDLINE | ID: mdl-37778286

Succinate dehydrogenase inhibitors (SDHi) are fungicides used to control the proliferation of pathogenic fungi in crops. Their mode of action is based on blocking the activity of succinate dehydrogenase (SDH), a universal enzyme expressed by all species harboring mitochondria. The SDH is involved in two interconnected metabolic processes for energy production: the transfer of electrons in the mitochondrial respiratory chain and the oxidation of succinate to fumarate in the Krebs cycle. In humans, inherited SDH deficiencies may cause major pathologies including encephalopathies and cancers. The cellular and molecular mechanisms related to such genetic inactivation have been well described in neuroendocrine tumors, in which it induces an oxidative stress, a pseudohypoxic phenotype, a metabolic, epigenetic and transcriptomic remodeling, and alterations in the migration and invasion capacities of cancer cells, in connection with the accumulation of succinate, an oncometabolite, substrate of the SDH. We will discuss recent studies reporting toxic effects of SDHi in non-target organisms and their implications for risk assessment of pesticides. Recent data show that the SDH structure is highly conserved during evolution and that SDHi can inhibit SDH activity in mitochondria of non-target species, including humans. These observations suggest that SDHi are not specific inhibitors of fungal SDH. We hypothesize that SDHi could have toxic effects in other species, including humans. Moreover, the analysis of regulatory assessment reports shows that most SDHi induce tumors in animals without evidence of genotoxicity. Thus, these substances could have a non-genotoxic mechanism of carcinogenicity that still needs to be fully characterized and that could be related to SDH inhibition. The use of pesticides targeting mitochondrial enzymes encoded by tumor suppressor genes raises questions on the risk assessment framework of mitotoxic pesticides. The issue of SDHi fungicides is therefore a textbook case that highlights the urgent need for changes in regulatory assessment.


Fungicides, Industrial , Pesticides , Animals , Humans , Fungicides, Industrial/toxicity , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Fungi/metabolism , Succinic Acid , Succinates
10.
Int J Tryptophan Res ; 16: 11786469231185102, 2023.
Article En | MEDLINE | ID: mdl-37719171

The Aryl hydrocarbon receptor (AhR) is a xenobiotic and endobiotic receptor, which regulates many cellular processes from contaminant metabolism to immunomodulation. Consequently, it is also involved in pathophysiological pathways and now represents a potential therapeutical target. In this review, we will highlight the ancestral function of the protein together with an illustration of its ligand's battery, emphasizing the different responses triggered by these high diverse molecules. Among them, several members of the kynurenine pathway (one key process of tryptophan catabolism) are AhR agonists and are subsequently involved in regulatory functions. We will finally display the interplay between Tryptophan (Trp) catabolism and dysregulation in metabolic pathways drawing hypothesis on the involvement of the AhR pathway in these cancer-related processes.

11.
BMJ ; 382: e076058, 2023 09 06.
Article En | MEDLINE | ID: mdl-37673430

OBJECTIVE: To assess the associations between exposure to food additive emulsifiers and risk of cardiovascular disease (CVD). DESIGN: Prospective cohort study. SETTING: French NutriNet-Santé study, 2009-21. PARTICIPANTS: 95 442 adults (>18 years) without prevalent CVD who completed at least three 24 hour dietary records during the first two years of follow-up. MAIN OUTCOME MEASURES: Associations between intake of food additive emulsifiers (continuous (mg/day)) and risk of CVD, coronary heart disease, and cerebrovascular disease characterised using multivariable proportional hazard Cox models to compute hazard ratios for each additional standard deviation (SD) of emulsifier intake, along with 95% confidence intervals. RESULTS: Mean age was 43.1 (SD 14.5) years, and 79.0% (n=75 390) of participants were women. During follow-up (median 7.4 years), 1995 incident CVD, 1044 coronary heart disease, and 974 cerebrovascular disease events were diagnosed. Higher intake of celluloses (E460-E468) was found to be positively associated with higher risks of CVD (hazard ratio for an increase of 1 standard deviation 1.05, 95% confidence interval 1.02 to 1.09, P=0.003) and coronary heart disease (1.07, 1.02 to 1.12, P=0.004). Specifically, higher cellulose E460 intake was linked to higher risks of CVD (1.05, 1.01 to 1.09, P=0.007) and coronary heart disease (1.07, 1.02 to 1.12, P=0.005), and higher intake of carboxymethylcellulose (E466) was associated with higher risks of CVD (1.03, 1.01 to 1.05, P=0.004) and coronary heart disease (1.04, 1.02 to 1.06, P=0.001). Additionally, higher intakes of monoglycerides and diglycerides of fatty acids (E471 and E472) were associated with higher risks of all outcomes. Among these emulsifiers, lactic ester of monoglycerides and diglycerides of fatty acids (E472b) was associated with higher risks of CVD (1.06, 1.02 to 1.10, P=0.002) and cerebrovascular disease (1.11, 1.06 to 1.16, P<0.001), and citric acid ester of monoglycerides and diglycerides of fatty acids (E472c) was associated with higher risks of CVD (1.04, 1.02 to 1.07, P=0.004) and coronary heart disease (1.06, 1.03 to 1.09, P<0.001). High intake of trisodium phosphate (E339) was associated with an increased risk of coronary heart disease (1.06, 1.00 to 1.12, P=0.03). Sensitivity analyses showed consistent associations. CONCLUSION: This study found positive associations between risk of CVD and intake of five individual and two groups of food additive emulsifiers widely used in industrial foods. TRIAL REGISTRATION: ClinicalTrials.gov NCT03335644.


Cardiovascular Diseases , Adult , Humans , Female , Male , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Food Additives , Diglycerides , Monoglycerides , Prospective Studies , Cellulose , Esters , Fatty Acids
12.
Environ Pollut ; 336: 122387, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37591324

Persistent organic pollutants (POPs) accumulated in the adipose tissue can affect the fatty acid and lipid metabolism in the body. Gas chromatography-mass spectrometry (GC-MS) metabolomics analysis was carried out to study the metabolic changes induced by internal exposure to the POPs in mouse skeletal muscle (soleus, plantaris, and gastrocnemius), kidney, heart, and lungs. Male donor mice were injected with a mixture of 10 POPs at concentrations of 0 × and 5 × lowest-observed-adverse-effect level (LOAEL). Their adipose tissue (AT) containing the POP was then grafted onto the host mice and the metabolic change of the host mice was monitored for 3 or 21 days. The metabolites related to fatty acid and lipid metabolism were studied. For the host mice engrafted with POP-containing fat pad, there was dysregulation of the fatty acids and glycerides observed in all the organs studied 3 days after the graft. However, there was no longer a significant change in the metabolites 21 days after the graft. The difference in significant values and metabolite regulation in each of the skeletal muscles showed that the POP mixture affects different types of skeletal muscle in a heterogeneous manner. Fold change analysis showed that certain metabolites in the kidney of host mice exposed to POPs for 3 days were greatly affected. Using multivariate analysis, apart from the plantaris, most treated groups exposed to POPs for 3 days are well distinguished from the control groups. However, for host mice exposed to POPs for 21 days, apart from the kidney and heart, groups are not well-distinguished from the control group. This study helps bring new insight into the effects of the pollutants mixture released from AT on fatty acid and lipid metabolism at different periods and how the dysregulation of metabolites might result in diseases associated with the organs.


Environmental Pollutants , Male , Animals , Mice , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Fatty Acids/metabolism , Lipid Metabolism , Muscle, Skeletal , Adipose Tissue/metabolism , Kidney/metabolism , Lung
13.
NMR Biomed ; 36(11): e5006, 2023 Nov.
Article En | MEDLINE | ID: mdl-37524504

Nowadays, exposure to endocrine-disrupting chemicals (EDCs), including persistent organic pollutants (POPs), is one of the most critical threats to public health. EDCs are chemicals that mimic, block, or interfere with hormones in the body's endocrine system and have been associated with a wide range of health issues. This innovative, untargeted metabolomics study investigates chronic low-dose internal exposure to a cocktail of POPs on multiple tissues that are known to accumulate these lipophilic compounds. Interestingly, the metabolic response differs among selected tissues/organs in mice. In the liver, we observed a dynamic effect according to the exposure time and the doses of POPs. In the brain tissue, the situation is the opposite, leading to the conclusion that the presence of POPs immediately gives a saturated effect that is independent of the dose and the duration of exposure studied. By contrast, for the adipose tissues, nearly no effect is observed. This metabolic profiling leads to a holistic and dynamic overview of the main metabolic pathways impacted in lipophilic tissues by a cocktail of POPs.

14.
Front Toxicol ; 5: 1220998, 2023.
Article En | MEDLINE | ID: mdl-37492623

Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.

15.
J Hepatol ; 79(2): 492-505, 2023 08.
Article En | MEDLINE | ID: mdl-36889360

Since the initial development of the exposome concept, much effort has been devoted to the characterisation of the exposome through analytical, epidemiological, and toxicological/mechanistic studies. There is now an urgent need to link the exposome to human diseases and to include exposomics in the characterisation of environment-linked pathologies together with genomics and other omics. Liver diseases are particularly well suited for such studies since major functions of the liver include the detection, detoxification, and elimination of xenobiotics, as well as inflammatory responses. It is well known that several liver diseases are associated with i) addictive behaviours such as alcohol consumption, smoking, and to a certain extent dietary imbalance and obesity, ii) viral and parasitic infections, and iii) exposure to toxins and occupational chemicals. Recent studies indicate that environmental exposures are also significantly associated with liver diseases, and these include air pollution (particulate matter and volatile chemicals), contaminants such as polyaromatic hydrocarbons, bisphenol A and per-and poly-fluorinated substances, and physical stressors such as radiation. Furthermore, microbial metabolites and the "gut-liver" axis play a major role in liver diseases. Exposomics is poised to play a major role in the field of liver pathology. Methodological advances such as the exposomics-metabolomics framework, the determination of risk factors' genomic and epigenomic signatures, and cross-species biological pathway analysis should further delineate the impact of the exposome on the liver, opening the way for improved prevention, as well as the identification of new biomarkers of exposure and effects, and additional therapeutic targets.


Air Pollution , Exposome , Liver Diseases , Humans , Environmental Exposure/adverse effects , Liver Diseases/etiology
16.
Int J Mol Sci ; 24(6)2023 Mar 12.
Article En | MEDLINE | ID: mdl-36982514

Human placenta is a multifunctional interface between maternal and fetal blood. Studying the impact of pollutants on this organ is crucial because many xenobiotics in maternal blood can accumulate in placental cells or pass into the fetal circulation. Benzo(a)pyrene (BaP) and cerium dioxide nanoparticles (CeO2 NP), which share the same emission sources, are found in ambient air pollution and also in maternal blood. The aim of the study was to depict the main signaling pathways modulated after exposure to BaP or CeO2 NP vs. co-exposure on both chorionic villi explants and villous cytotrophoblasts isolated from human term placenta. At nontoxic doses of pollutants, BaP is bioactivated by AhR xenobiotic metabolizing enzymes, leading to DNA damage with an increase in γ-H2AX, the stabilization of stress transcription factor p53, and the induction of its target p21. These effects are reproduced in co-exposure with CeO2 NP, except for the increase in γ-H2AX, which suggests a modulation of the genotoxic effect of BaP by CeO2 NP. Moreover, CeO2 NP in individual and co-exposure lead to a decrease in Prx-SO3, suggesting an antioxidant effect. This study is the first to identify the signaling pathways modulated after co-exposure to these two pollutants, which are common in the environment.


Cerium , Environmental Pollutants , Nanoparticles , Humans , Female , Pregnancy , Trophoblasts , Benzo(a)pyrene/toxicity , Placenta , Cerium/toxicity , Nanoparticles/toxicity , Environmental Pollutants/toxicity
17.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article En | MEDLINE | ID: mdl-36982624

The aryl hydrocarbon receptor (AHR) is a sensor of low-molecular-weight molecule signals that originate from environmental exposures, the microbiome, and host metabolism. Building upon initial studies examining anthropogenic chemical exposures, the list of AHR ligands of microbial, diet, and host metabolism origin continues to grow and has provided important clues as to the function of this enigmatic receptor. The AHR has now been shown to be directly involved in numerous biochemical pathways that influence host homeostasis, chronic disease development, and responses to toxic insults. As this field of study has continued to grow, it has become apparent that the AHR is an important novel target for cancer, metabolic diseases, skin conditions, and autoimmune disease. This meeting attempted to cover the scope of basic and applied research being performed to address possible applications of our basic knowledge of this receptor on therapeutic outcomes.


Autoimmune Diseases , Neoplasms , Humans , Receptors, Aryl Hydrocarbon/metabolism , Universities , Neoplasms/drug therapy , Neoplasms/metabolism , Diet
18.
Environ Health Perspect ; 131(3): 37011, 2023 03.
Article En | MEDLINE | ID: mdl-36927187

BACKGROUND: Prenatal exposure to persistent organic pollutants (POPs) may contribute to the development of childhood obesity and metabolic disorders. However, little is known about whether the maternal nutritional status during pregnancy can modulate these associations. OBJECTIVES: The main objective was to characterize the joint associations and interactions between prenatal levels of POPs and nutrients on childhood obesity. METHODS: We used data from to the Spanish INfancia y Medio Ambiente-Environment and Childhood (INMA) birth cohort, on POPs and nutritional biomarkers measured in maternal blood collected at the first trimester of pregnancy and child anthropometric measurements at 7 years of age. Six organochlorine compounds (OCs) [dichlorodiphenyldichloroethylene, hexachlorobenzene (HCB), ß-hexachlorocyclohexane (ß-HCH) and polychlorinated biphenyls 138, 153, 180] and four per- and polyfluoroalkyl substances (PFAS) were measured. Nutrients included vitamins (D, B12, and folate), polyunsaturated fatty acids (PUFAs), and dietary carotenoids. Two POPs-nutrients mixtures data sets were established: a) OCs, PFAS, vitamins, and carotenoids (n=660), and b) OCs, PUFAs, and vitamins (n=558). Joint associations of mixtures on obesity were characterized using Bayesian kernel machine regression (BKMR). Relative importance of biomarkers and two-way interactions were identified using gradient boosting machine, hierarchical group lasso regularization, and BKMR. Interactions were further characterized using multivariate regression models in the multiplicative and additive scale. RESULTS: Forty percent of children had overweight or obesity. We observed a positive overall joint association of both POPs-nutrients mixtures on overweight/obesity risk, with HCB and vitamin B12 the biomarkers contributing the most. Recurrent interactions were found between HCB and vitamin B12 across screening models. Relative risk for a natural log increase of HCB was 1.31 (95% CI: 1.11, 1.54, pInteraction=0.02) in the tertile 2 of vitamin B12 and in the additive scale a relative excess risk due to interaction of 0.11 (95% CI: 0.02, 0.20) was found. Interaction between perfluorooctane sulfonate and ß-cryptoxanthin suggested a protective effect of the antioxidant on overweight/obesity risk. CONCLUSION: These results support that maternal nutritional status may modulate the effect of prenatal exposure to POPs on childhood overweight/obesity. These findings may help to develop a biological hypothesis for future toxicological studies and to better interpret inconsistent findings in epidemiological studies. https://doi.org/10.1289/EHP11258.


Environmental Pollutants , Fluorocarbons , Hydrocarbons, Chlorinated , Pediatric Obesity , Prenatal Exposure Delayed Effects , Pregnancy , Female , Humans , Child , Pediatric Obesity/chemically induced , Pediatric Obesity/epidemiology , Persistent Organic Pollutants , Prenatal Exposure Delayed Effects/epidemiology , Overweight , Prospective Studies , Hexachlorobenzene , Bayes Theorem , Vitamins , Vitamin B 12
19.
Toxicol Sci ; 192(1): 30-42, 2023 03 20.
Article En | MEDLINE | ID: mdl-36847453

Breast cancer is a major public health issue and the role of pollutants in promoting breast cancer progression has recently been suggested. We aimed to assess if a mixture of pollutants, cigarette smoke, could favor the aggressivity of breast cancer cells. We also evaluated the impact of the tumor microenvironment, largely represented by adipocytes, in mediating this modification of cell phenotype. Breast cancer cells lines, MCF-7 were cultured using a transwell coculture model with preadipocytes hMADS cells or were cultured alone. Cells were treated with cigarette smoke extract (CSE) and the four conditions: control, treated by CSE, coculture, and coexposure (coculture and CSE) were compared. We analyzed morphological changes, cell migration, resistance to anoikis, stemness, epithelial-to-mesenchymal transition (EMT), and the presence of hormonal receptors in each condition. A complete transcriptomic analysis was carried out to highlight certain pathways. We also assessed whether the aryl hydrocarbon receptor (AhR), a receptor involved in the metabolism of xenobiotics, could mediate these modifications. Several hallmarks of metastasis were specific to the coexposure condition (cell migration, resistance to anoikis, stemness characterized by CD24/CD44 ratios and ALDH1A1 and ALDH1A3 rates) whereas others (morphological changes, EMT, loss of hormonal receptors) could be seen in the coculture condition and were aggravated by CSE (coexposure). Moreover, MCF-7 cells presented a decrease in hormonal receptors, suggesting an endocrine treatment resistance. These results were confirmed by the transcriptomic analysis. We suggest that the AhR could mediate the loss of hormonal receptor and the increase in cell migration.


Breast Neoplasms , Cigarette Smoking , Female , Humans , Breast/metabolism , Breast Neoplasms/metabolism , Epithelial-Mesenchymal Transition , MCF-7 Cells , Tumor Microenvironment
20.
Toxicology ; 487: 153467, 2023 03 15.
Article En | MEDLINE | ID: mdl-36842454

Parkinson's disease is a severe neurodegenerative disease. Several environmental contaminants such as pesticides have been suspected to favor the appearance of this pathology. The protein DJ-1 (or Park7) protects against the development of Parkinson's disease. Thus, the possible inhibitory effects of about a hundred pesticides on human DJ-1 have been studied. We identified fifteen of them as strong inhibitors of DJ-1 with IC50 values between 0.02 and 30 µM. Thiocarbamates are particularly good inhibitors, as shown by thiram that acts as an irreversible inhibitor of an esterase activity of DJ-1 with an IC50 value of 0.02 µM. Thiram was also found as a good inhibitor of the protective activity of DJ-1 against glycation. Such inhibitory effects could be one of the various biological effects of these pesticides that may explain their involvement in the development of Parkinson's disease.


Neurodegenerative Diseases , Parkinson Disease , Pesticides , Humans , Parkinson Disease/pathology , Pesticides/toxicity , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Thiram
...