Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Carbohydr Polym ; 345: 122576, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39227123

ABSTRACT

Dihydrazide (ADH) and dioxyamine (PDHA) were assessed for their efficacy in coupling chitosan and dextran via their reducing ends. Initially, the end-functionalization of the individual polysaccharide blocks was investigated. Under non-reducing conditions, chitosan with a 2,5-anhydro-D-mannose unit at its reducing end exhibited high reactivity with both PDHA and ADH. Dextran, with a normal reducing end, showed superior reactivity with PDHA compared to ADH, although complete conversion with ADH could be achieved under reductive conditions with NaBH3CN. Importantly, the oxime bond in PDHA conjugates exhibited greater stability against hydrolysis compared to the hydrazone bond in ADH conjugates. The optimal block coupling method consisted in reacting chitosan with an excess of dextran pre-functionalized with PDHA. The copolysaccharides could be synthesized in high yields under both reducing and non-reducing conditions. This methodology was applied to relatively long polysaccharide blocks with molecular weight up to 14,000 g/mol for chitosan and up to 40,000 g/mol for dextran. Surprisingly, block copolysaccharides did not self-assemble at neutral or basic pH; rather, they precipitated due to hydrogen bonding between neutralized amino groups of chitosan. However, nanoparticles could be obtained through a nanoprecipitation approach.

2.
J Colloid Interface Sci ; 604: 575-583, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34280755

ABSTRACT

Membrane structuration of Large Hybrid Unilamellar Polymer/Lipid Vesicle (LHUV) is an important parameter on the optimization of their properties and thus their valuation in various fields. However, this kind of information is hardly accessible. In this work, we will focus on the development of LHUV obtained from the self-assembly of diblock poly(dimethylsiloxane)-b-poly(ethylene oxide) (PDMS-b-PEO) of different molar masses combined with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at 15% and 25% w/w content. The hybrid character of the resulting vesicles as well as their membrane structure are characterized by the mean of different techniques such as small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). We show that hybrid vesicles with homogeneous membrane structure are obtained whatever the molar mass of the block copolymer (from 2500 to 4000 g/mol), with of a small number of tubular structures observed with the higher molar mass. We also demonstrate that the permeability of the LHUV, evaluated through controlled release experiments of fluorescein loaded in LHUV, is essentially controlled by the lipid/polymer composition.


Subject(s)
Polymers , Unilamellar Liposomes , Lipid Bilayers , Molecular Weight , Permeability , Polyethylene Glycols
SELECTION OF CITATIONS
SEARCH DETAIL