Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
2.
Am J Med Genet A ; 194(3): e63466, 2024 Mar.
Article En | MEDLINE | ID: mdl-37949664

Activating variants in the PIK3CA gene cause a heterogeneous spectrum of disorders that involve congenital or early-onset segmental/focal overgrowth, now referred to as PIK3CA-related overgrowth spectrum (PROS). Historically, the clinical diagnoses of patients with PROS included a range of distinct syndromes, including CLOVES syndrome, dysplastic megalencephaly, hemimegalencephaly, focal cortical dysplasia, Klippel-Trenaunay syndrome, CLAPO syndrome, fibroadipose hyperplasia or overgrowth, hemihyperplasia multiple lipomatosis, and megalencephaly capillary malformation-polymicrogyria (MCAP) syndrome. MCAP is a sporadic overgrowth disorder that exhibits core features of progressive megalencephaly, vascular malformations, distal limb malformations, cortical brain malformations, and connective tissue dysplasia. In 2012, our research group contributed to the identification of predominantly mosaic, gain-of-function variants in PIK3CA as an underlying genetic cause of the syndrome. Mosaic variants are technically more difficult to detect and require implementation of more sensitive sequencing technologies and less stringent variant calling algorithms. In this study, we demonstrated the utility of deep sequencing using the Illumina TruSight Oncology 500 (TSO500) sequencing panel in identifying variants with low allele fractions in a series of patients with PROS and suspected mosaicism: pathogenic, mosaic PIK3CA variants were identified in all 13 individuals, including 6 positive controls. This study highlights the importance of screening for low-level mosaic variants in PROS patients. The use of targeted panels with deep sequencing in clinical genetic testing laboratories would improve diagnostic yield and accuracy within this patient population.


Abnormalities, Multiple , Megalencephaly , Musculoskeletal Abnormalities , Skin Diseases, Vascular , Telangiectasis/congenital , Vascular Malformations , Humans , Mutation , Musculoskeletal Abnormalities/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Vascular Malformations/diagnosis , Vascular Malformations/genetics , High-Throughput Nucleotide Sequencing
3.
J Hum Genet ; 69(2): 101-105, 2024 Feb.
Article En | MEDLINE | ID: mdl-37904029

Partial duplications of genes can be challenging to detect and interpret and, therefore, likely represent an underreported cause of human disease. X-linked dominant variants in ATRX are associated with Alpha-thalassemia/impaired intellectual development syndrome, X-linked (ATR-X syndrome), a clinically heterogeneous disease generally presenting with intellectual disability, hypotonia, characteristic facies, genital anomalies, and alpha-thalassemia. We describe an affected male with a de novo hemizygous intragenic duplication of ~43.6 kb in ATRX, detected by research genome sequencing following non-diagnostic clinical testing. RNA sequencing and DNA methylation episignature analyses were central in variant interpretation, and this duplication was subsequently interpreted as disease-causing. This represents the smallest reported tandem duplication within ATRX associated with disease. This case demonstrates the diagnostic utility of integrating multiple omics technologies, which can ultimately lead to a definitive diagnosis for rare disease patients.


Intellectual Disability , Mental Retardation, X-Linked , alpha-Thalassemia , Humans , Male , alpha-Thalassemia/diagnosis , alpha-Thalassemia/genetics , X-linked Nuclear Protein/genetics , DNA Copy Number Variations/genetics , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics
4.
Am J Med Genet A ; 194(5): e63522, 2024 May.
Article En | MEDLINE | ID: mdl-38131126

Despite significant advancements in rare genetic disease diagnostics, many patients with rare genetic disease remain without a molecular diagnosis. Novel tools and methods are needed to improve the detection of disease-associated variants and understand the genetic basis of many rare diseases. Long-read genome sequencing provides improved sequencing in highly repetitive, homologous, and low-complexity regions, and improved assessment of structural variation and complex genomic rearrangements compared to short-read genome sequencing. As such, it is a promising method to explore overlooked genetic variants in rare diseases with a high suspicion of a genetic basis. We therefore applied PacBio HiFi sequencing in a large multi-generational family presenting with autosomal dominant 46,XY differences of sexual development (DSD), for whom extensive molecular testing over multiple decades had failed to identify a molecular diagnosis. This revealed a rare SINE-VNTR-Alu retroelement insertion in intron 4 of NR5A1, a gene in which loss-of-function variants are an established cause of 46,XY DSD. The insertion segregated among affected family members and was associated with loss-of-expression of alleles in cis, demonstrating a functional impact on NR5A1. This case highlights the power of long-read genome sequencing to detect genomic variants that have previously been intractable to detection by standard short-read genomic testing.


Disorder of Sex Development, 46,XY , Retroelements , Humans , Mutation , Introns/genetics , Retroelements/genetics , Disorder of Sex Development, 46,XY/genetics , Rare Diseases/genetics , Sexual Development , Steroidogenic Factor 1/genetics
5.
bioRxiv ; 2023 Jun 30.
Article En | MEDLINE | ID: mdl-37425777

The factors driving initiation of pathological expansion of tandem repeats remain largely unknown. Here, we assessed the FGF14 -SCA27B (GAA)•(TTC) repeat locus in 2,530 individuals by long-read and Sanger sequencing and identified a 5'-flanking 17-bp deletion-insertion in 70.34% of alleles (3,463/4,923). This common sequence variation was present nearly exclusively on alleles with fewer than 30 GAA-pure repeats and was associated with enhanced meiotic stability of the repeat locus.

6.
Mol Genet Genomic Med ; 11(10): e2247, 2023 Oct.
Article En | MEDLINE | ID: mdl-37489014

BACKGROUND: Intronic variants outside the canonical splice site are challenging to interpret and therefore likely represent an underreported cause of human disease. Autosomal recessive variants in DYNC2H1 are associated with short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3), a clinically heterogeneous disease generally presenting with short ribs, shortened tubular bones, narrow thorax and acetabular roof anomalies. We describe a case of SRTD3 with compound heterozygous frameshift and intronic variants and highlight the essential role of RNA sequencing (RNA-Seq) in variant interpretation. METHODS: Following inconclusive clinical genetic testing identifying a likely pathogenic frameshift variant and an intronic variant of uncertain significance (VUS) in DYNC2H1 in trans, the family enrolled in the Care4Rare Canada research program, where RNA-Seq studies were performed. RESULTS: The proband presented with post-axial polydactyly of all four limbs, a significantly small chest with a pectus excavatum and anterior flaring of the ribs. RNA-Seq investigations revealed a novel splice junction as a result of the intronic VUS and significantly decreased DYNC2H1 gene expression in the proband. CONCLUSION: This case demonstrates the diagnostic utility of RNA-Seq for variant interpretation following inconclusive clinical testing, which can ultimately lead to diagnosis for patients with rare disease.

8.
J Rheumatol ; 50(5): 671-675, 2023 05.
Article En | MEDLINE | ID: mdl-36379578

OBJECTIVE: Genetics play an important role in systemic lupus erythematosus (SLE) pathogenesis. We calculated the prevalence of rare variants in known monogenic lupus genes among children suspected of monogenic lupus. METHODS: We completed paired-end genome-wide sequencing (whole genome sequencing [WGS] or whole exome sequencing) in patients suspected of monogenic lupus, and focused on 36 monogenic lupus genes. We prioritized rare (minor allele frequency < 1%) exonic, nonsynonymous, and splice variants with predicted pathogenicity classified as deleterious variants (Combined Annotation Dependent Depletion [CADD], PolyPhen2, and Sorting Intolerant From Tolerant [SIFT] scores). Additional filtering restricted to predicted damaging variants by considering reported zygosity. In those with WGS (n = 69), we examined copy number variants (CNVs) > 1 kb in size. We created additive non-HLA and HLA SLE genetic risk scores (GRSs) using common SLE-risk single-nucleotide polymorphisms. We tested the relationship between SLE GRSs and the number of rare variants with multivariate logistic models, adjusted for sex, ancestry, and age of diagnosis. RESULTS: The cohort included 71 patients, 80% female, with a mean age at diagnosis of 8.9 (SD 3.2) years. We identified predicted damaging variants in 9 (13%) patients who were significantly younger at diagnosis compared to those without a predicted damaging variant (6.8 [SD 2.1] years vs 9.2 [SD 3.2] years, P = 0.01). We did not identify damaging CNVs. There was no significant association between non-HLA or HLA SLE GRSs and the odds of carrying ≥ 1 rare variant in multivariate analyses. CONCLUSION: In a cohort of patients with suspected monogenic lupus who underwent genome-wide sequencing, 13% carried rare predicted damaging variants for monogenic lupus. Additional studies are needed to validate our findings.


Lupus Erythematosus, Systemic , Humans , Child , Female , Male , Lupus Erythematosus, Systemic/genetics , Base Sequence , Sequence Analysis, DNA , Exome Sequencing , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
9.
Clin Genet ; 103(3): 288-300, 2023 03.
Article En | MEDLINE | ID: mdl-36353900

We examined the utility of clinical and research processes in the reanalysis of publicly-funded clinical exome sequencing data in Ontario, Canada. In partnership with eight sites, we recruited 287 families with suspected rare genetic diseases tested between 2014 and 2020. Data from seven laboratories was reanalyzed with the referring clinicians. Reanalysis of clinically relevant genes identified diagnoses in 4% (13/287); four were missed by clinical testing. Translational research methods, including analysis of novel candidate genes, identified candidates in 21% (61/287). Of these, 24 families have additional evidence through data sharing to support likely diagnoses (8% of cohort). This study indicates few diagnoses are missed by clinical laboratories, the incremental gain from reanalysis of clinically-relevant genes is modest, and the highest yield comes from validation of novel disease-gene associations. Future implementation of translational research methods, including continued reporting of compelling genes of uncertain significance by clinical laboratories, should be considered to maximize diagnoses.


Genetic Testing , Humans , Genetic Testing/methods , Ontario/epidemiology , Exome Sequencing
10.
Neurol Genet ; 9(5): e200088, 2023 Oct.
Article En | MEDLINE | ID: mdl-38235364

Background and Objectives: The human genome contains ∼20,000 genes, each of which has its own set of complex regulatory systems to govern precise expression in each developmental stage and cell type. Here, we report a female patient with congenital weakness, respiratory failure, skeletal dysplasia, contractures, short stature, intellectual delay, respiratory failure, and amenorrhea who presented to Medical Genetics service with no known cause for her condition. Methods: Whole-exome and whole-genome sequencing were conducted, as well as investigational functional studies to assess the effect of SOX8 variant. Results: The patient was found to have biallelic SOX8 variants (NM_014587.3:c.422+5G>C; c.583dup p.(His195ProfsTer11)). SOX8 is a transcriptional regulator, which is predicted to be imprinted (expressed from only one parental allele), but this has not yet been confirmed. We provide evidence that while SOX8 was maternally expressed in adult-derived fibroblasts and lymphoblasts, it was biallelically expressed in other cell types and therefore suggest that biallelic variants are associated with this recessive condition. Functionally, we showed that the paternal variant had the capacity to affect mRNA splicing while the maternal variant resulted in low levels of a truncated protein, which showed decreased binding at and altered expression of SOX8 targets. Discussion: Our findings associate SOX8 variants with this novel condition, highlight how complex genome regulation can complicate novel disease-gene identification, and provide insight into the molecular pathogenesis of this disease.

11.
J Rheumatol ; 49(10): 1146-1151, 2022 Oct.
Article En | MEDLINE | ID: mdl-35649546

OBJECTIVE: Macrophage activation syndrome (MAS), a life-threatening complication of systemic lupus erythematosus (SLE), resembles familial hemophagocytic lymphohistiocytosis (HLH), an inherited disorder of hyperinflammation. We compared the proportion of patients with childhood-onset SLE (cSLE) with and without MAS who carried low-frequency HLH nonsynonymous variants. METHODS: We enrolled patients from the Lupus Clinic at SickKids, Toronto. Demographic and clinical features were extracted from the SLE database and ancestry was genetically inferred using multiethnic genotyping array data. Patients with MAS (based on expert diagnosis) underwent either paired-end whole-exome sequencing (WES; read depth: 70-118X) or whole-genome sequencing (WGS). Patients without MAS had WGS (read depth: 37-40X). In 16 HLH genes, we prioritized low-frequency (minor allele frequency [MAF] < 0.05) exonic nonsynonymous variants. We compared the proportion of patients with and without MAS carrying HLH variants (Fisher exact test, P < 0.05). MAFs were compared to an ancestrally matched general population (Trans-Omics for Precision Medicine [TOPMed] and Genome Aggregation Database [gnomAD]). RESULTS: The study included 81 patients with cSLE, 19 of whom had MAS. We identified 47 unique low-frequency nonsynonymous HLH variants. There was no difference in the proportion of patients with and without MAS carrying ≥ 1 HLH variants (37% vs 47%, P = 0.44). The MAS cohort did not carry more HLH variants when compared to an ancestrally matched general population. CONCLUSION: In a single-center multiethnic cSLE cohort, we found no difference in the proportion of patients with MAS carrying nonsynonymous HLH genetic variants compared to patients without MAS. To our knowledge, this is the first study to examine the frequency of HLH genetic variants in relation to MAS among patients with cSLE. Future studies are required to validate our findings.


Lupus Erythematosus, Systemic , Lymphohistiocytosis, Hemophagocytic , Macrophage Activation Syndrome , Humans , Macrophage Activation Syndrome/genetics , Macrophage Activation Syndrome/diagnosis , Lymphohistiocytosis, Hemophagocytic/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/complications , Cohort Studies
12.
HGG Adv ; 3(3): 100108, 2022 Jul 14.
Article En | MEDLINE | ID: mdl-35599849

Genome-wide sequencing (GWS) is a standard of care for diagnosis of suspected genetic disorders, but the proportion of patients found to have pathogenic or likely pathogenic variants ranges from less than 30% to more than 60% in reported studies. It has been suggested that the diagnostic rate can be improved by interpreting genomic variants in the context of each affected individual's full clinical picture and by regular follow-up and reinterpretation of GWS laboratory results. Trio exome sequencing was performed in 415 families and trio genome sequencing in 85 families in the CAUSES study. The variants observed were interpreted by a multidisciplinary team including laboratory geneticists, bioinformaticians, clinical geneticists, genetic counselors, pediatric subspecialists, and the referring physician, and independently by a clinical laboratory using standard American College of Medical Genetics and Genomics (ACMG) criteria. Individuals were followed for an average of 5.1 years after testing, with clinical reassessment and reinterpretation of the GWS results as necessary. The multidisciplinary team established a diagnosis of genetic disease in 43.0% of the families at the time of initial GWS interpretation, and longitudinal follow-up and reinterpretation of GWS results produced new diagnoses in 17.2% of families whose initial GWS interpretation was uninformative or uncertain. Reinterpretation also resulted in rescinding a diagnosis in four families (1.9%). Of the families studied, 33.6% had ACMG pathogenic or likely pathogenic variants related to the clinical indication. Close collaboration among clinical geneticists, genetic counselors, laboratory geneticists, bioinformaticians, and individuals' primary physicians, with ongoing follow-up, reanalysis, and reinterpretation over time, can improve the clinical value of GWS.

13.
Hum Mutat ; 43(6): 800-811, 2022 06.
Article En | MEDLINE | ID: mdl-35181971

Despite recent progress in the understanding of the genetic etiologies of rare diseases (RDs), a significant number remain intractable to diagnostic and discovery efforts. Broad data collection and sharing of information among RD researchers is therefore critical. In 2018, the Care4Rare Canada Consortium launched the project C4R-SOLVE, a subaim of which was to collect, harmonize, and share both retrospective and prospective Canadian clinical and multiomic data. Here, we introduce Genomics4RD, an integrated web-accessible platform to share Canadian phenotypic and multiomic data between researchers, both within Canada and internationally, for the purpose of discovering the mechanisms that cause RDs. Genomics4RD has been designed to standardize data collection and processing, and to help users systematically collect, prioritize, and visualize participant information. Data storage, authorization, and access procedures have been developed in collaboration with policy experts and stakeholders to ensure the trusted and secure access of data by external researchers. The breadth and standardization of data offered by Genomics4RD allows researchers to compare candidate disease genes and variants between participants (i.e., matchmaking) for discovery purposes, while facilitating the development of computational approaches for multiomic data analyses and enabling clinical translation efforts for new genetic technologies in the future.


Rare Diseases , Canada , Genetic Association Studies , Humans , Phenotype , Prospective Studies , Rare Diseases/diagnosis , Rare Diseases/genetics , Retrospective Studies
14.
Elife ; 92020 12 22.
Article En | MEDLINE | ID: mdl-33350388

Autism spectrum disorder (ASD) is a constellation of neurodevelopmental disorders with high phenotypic and genetic heterogeneity, complicating the discovery of causative genes. Through a forward genetics approach selecting for defective vocalization in mice, we identified Kdm5a as a candidate ASD gene. To validate our discovery, we generated a Kdm5a knockout mouse model (Kdm5a-/-) and confirmed that inactivating Kdm5a disrupts vocalization. In addition, Kdm5a-/- mice displayed repetitive behaviors, sociability deficits, cognitive dysfunction, and abnormal dendritic morphogenesis. Loss of KDM5A also resulted in dysregulation of the hippocampal transcriptome. To determine if KDM5A mutations cause ASD in humans, we screened whole exome sequencing and microarray data from a clinical cohort. We identified pathogenic KDM5A variants in nine patients with ASD and lack of speech. Our findings illustrate the power and efficacy of forward genetics in identifying ASD genes and highlight the importance of KDM5A in normal brain development and function.


Autism Spectrum Disorder/genetics , Retinoblastoma-Binding Protein 2/genetics , Adolescent , Animals , Child, Preschool , Female , Genetic Predisposition to Disease/genetics , Genetic Techniques , Humans , Male , Mice , Mice, Knockout , Mutation
15.
Mol Genet Metab ; 127(4): 368-372, 2019 08.
Article En | MEDLINE | ID: mdl-31311714

BACKGROUND: NGLY1-CDDG is a congenital disorder of deglycosylation caused by a defective peptide:N-glycanase (PNG). To date, all but one of the reported patients have been diagnosed through whole-exome or whole-genome sequencing, as no biochemical marker was available to identify this disease in patients. Recently, a potential urinary biomarker was reported, but the data presented suggest that this marker may be excreted intermittently. METHODS: In this study, we performed untargeted direct-infusion high-resolution mass spectrometry metabolomics in seven dried blood spots (DBS) from four recently diagnosed NGLY1-CDDG patients, to test for small-molecule biomarkers, in order to identify a potential diagnostic marker. Results were compared to 125 DBS of healthy controls and to 238 DBS of patients with other diseases. RESULTS: We identified aspartylglycosamine as the only significantly increased compound with a median Z-score of 4.8 (range: 3.8-8.5) in DBS of NGLY1-CDDG patients, compared to a median Z-score of -0.1 (range: -2.1-4.0) in DBS of healthy controls and patients with other diseases. DISCUSSION: The increase of aspartylglycosamine can be explained by lack of function of PNG. PNG catalyzes the cleavage of the proximal N-acetylglucosamine residue of an N-glycan from the asparagine residue of a protein, a step in the degradation of misfolded glycoproteins. PNG deficiency results in a single N-acetylglucosamine residue left attached to the asparagine residue which results in free aspartylglycosamine when the glycoprotein is degraded. Thus, we here identified aspartylglycosamine as the first potential small-molecule biomarker in DBS for NGLY1-CDDG, making a biochemical diagnosis for NGLY1-CDDG potentially feasible.


Acetylglucosamine/analogs & derivatives , Congenital Disorders of Glycosylation/diagnosis , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/deficiency , Acetylglucosamine/blood , Adolescent , Adult , Biomarkers/blood , Case-Control Studies , Child , Child, Preschool , Congenital Disorders of Glycosylation/blood , Dried Blood Spot Testing , Female , Humans , Infant , Male , Mass Spectrometry , Mutation , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/blood
16.
Gigascience ; 8(7)2019 07 01.
Article En | MEDLINE | ID: mdl-31289836

BACKGROUND: Mammalian X and Y chromosomes share a common evolutionary origin and retain regions of high sequence similarity. Similar sequence content can confound the mapping of short next-generation sequencing reads to a reference genome. It is therefore possible that the presence of both sex chromosomes in a reference genome can cause technical artifacts in genomic data and affect downstream analyses and applications. Understanding this problem is critical for medical genomics and population genomic inference. RESULTS: Here, we characterize how sequence homology can affect analyses on the sex chromosomes and present XYalign, a new tool that (1) facilitates the inference of sex chromosome complement from next-generation sequencing data; (2) corrects erroneous read mapping on the sex chromosomes; and (3) tabulates and visualizes important metrics for quality control such as mapping quality, sequencing depth, and allele balance. We find that sequence homology affects read mapping on the sex chromosomes and this has downstream effects on variant calling. However, we show that XYalign can correct mismapping, resulting in more accurate variant calling. We also show how metrics output by XYalign can be used to identify XX and XY individuals across diverse sequencing experiments, including low- and high-coverage whole-genome sequencing, and exome sequencing. Finally, we discuss how the flexibility of the XYalign framework can be leveraged for other uses including the identification of aneuploidy on the autosomes. XYalign is available open source under the GNU General Public License (version 3). CONCLUSIONS: Sex chromsome sequence homology causes the mismapping of short reads, which in turn affects downstream analyses. XYalign provides a reproducible framework to correct mismapping and improve variant calling on the sex chromsomes.


Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Sequence Homology, Nucleic Acid , Artifacts , Contig Mapping/methods , Contig Mapping/standards , Female , High-Throughput Nucleotide Sequencing/standards , Humans , Male , Sequence Alignment/methods , Sequence Alignment/standards , Sequence Analysis, DNA/standards
17.
BMC Genomics ; 18(1): 403, 2017 05 24.
Article En | MEDLINE | ID: mdl-28539120

BACKGROUND: Intellectual Disability (ID) is among the most common global disorders, yet etiology is unknown in ~30% of patients despite clinical assessment. Whole genome sequencing (WGS) is able to interrogate the entire genome, providing potential to diagnose idiopathic patients. METHODS: We conducted WGS on eight children with idiopathic ID and brain structural defects, and their normal parents; carrying out an extensive data analyses, using standard and discovery approaches. RESULTS: We verified de novo pathogenic single nucleotide variants (SNV) in ARID1B c.1595delG and PHF6 c.820C > T, potentially causative de novo two base indels in SQSTM1 c.115_116delinsTA and UPF1 c.1576_1577delinsA, and de novo SNVs in CACNB3 c.1289G > A, and SPRY4 c.508 T > A, of uncertain significance. We report results from a large secondary control study of 2081 exomes probing the pathogenicity of the above genes. We analyzed structural variation by four different algorithms including de novo genome assembly. We confirmed a likely contributory 165 kb de novo heterozygous 1q43 microdeletion missed by clinical microarray. The de novo assembly resulted in unmasking hidden genome instability that was missed by standard re-alignment based algorithms. We also interrogated regulatory sequence variation for known and hypothesized ID genes and present useful strategies for WGS data analyses for non-coding variation. CONCLUSION: This study provides an extensive analysis of WGS in the context of ID, providing genetic and structural insights into ID and yielding diagnoses.


Intellectual Disability/genetics , Whole Genome Sequencing , Child , Genome, Human/genetics , Humans , INDEL Mutation , Mutation, Missense , Polymorphism, Single Nucleotide
18.
J Chromatogr A ; 1349: 122-8, 2014 Jul 04.
Article En | MEDLINE | ID: mdl-24856905

Electrophoresis is an integral part of many molecular diagnostics protocols and an inexpensive implementation would greatly facilitate point-of-care (POC) applications. However, the high instrumentation cost presents a substantial barrier, much of it associated with fluorescence detection. The cost of such systems could be substantially reduced by placing the fluidic channel and photodiode directly above the detector in order to collect a larger portion of the fluorescent light. In future, this could be achieved through the integration and monolithic fabrication of photoresist microchannels on complementary metal-oxide semiconductor microelectronics (CMOS). However, the development of such a device is expensive due to high non-recurring engineering costs. To facilitate that development, we present a system that utilises an optical relay to integrate low-cost polymeric microfluidics with a CMOS chip that provides a photodiode, analog-digital conversion and a standard serial communication interface. This system embodies an intermediate level of microelectronic integration, and significantly decreases development costs. With a limit of detection of 1.3±0.4nM of fluorescently end-labeled deoxyribonucleic acid (DNA), it is suitable for diagnostic applications.


Electrophoresis/instrumentation , Microfluidics/instrumentation , Oligonucleotide Array Sequence Analysis/economics , Oligonucleotide Array Sequence Analysis/instrumentation , DNA/analysis , Electrophoresis/economics , Fluorescence , Light , Metals/chemistry , Microfluidics/economics , Optics and Photonics/instrumentation , Oxides/chemistry , Polymers/chemistry , Semiconductors
...