Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Sci Rep ; 6: 19300, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758086

ABSTRACT

Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.


Subject(s)
Complement Inactivating Agents/pharmacology , Complement Pathway, Classical/drug effects , Insect Proteins/pharmacology , Psychodidae/immunology , Psychodidae/metabolism , Saliva/metabolism , Animals , Chromatography, High Pressure Liquid , Complement Activation/drug effects , Complement C1/antagonists & inhibitors , Complement C1/immunology , Complement C1/metabolism , Complement C4/antagonists & inhibitors , Complement C4/immunology , Complement C4/metabolism , Humans , Recombinant Proteins/pharmacology
2.
Mem Inst Oswaldo Cruz ; 105(1): 1-12, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20209323

ABSTRACT

Insect-borne diseases are responsible for severe mortality and morbidity worldwide. As control of insect vector populations relies primarily on the use of insecticides, the emergence of insecticide resistance as well to unintended consequences of insecticide use pose significant challenges to their continued application. Novel approaches to reduce pathogen transmission by disease vectors are been attempted, including transmission-blocking vaccines (TBVs) thought to be a feasible strategy to reduce pathogen burden in endemic areas. TBVs aim at preventing the transmission of pathogens from infected to uninfected vertebrate host by targeting molecule(s) expressed on the surface of pathogens during their developmental phase within the insect vector or by targeting molecules expressed by the vectors. For pathogen-based molecules, the majority of the TBV candidates selected as well as most of the data available regarding the effectiveness of this approach come from studies using malaria parasites. However, TBV candidates also have been identified from midgut tissues of mosquitoes and sand flies. In spite of the successes achieved in the potential application of TBVs against insect-borne diseases, many significant barriers remain. In this review, many of the TBV strategies against insect-borne pathogens and their respective ramification with regards to the immune response of the vertebrate host are discussed.


Subject(s)
Antigens, Protozoan/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis/prevention & control , Malaria Vaccines/immunology , Malaria/prevention & control , Animals , Diptera/immunology , Diptera/parasitology , Humans , Insect Vectors/immunology , Insect Vectors/parasitology
3.
Mem. Inst. Oswaldo Cruz ; 105(1): 1-12, Feb. 2010. ilus, tab
Article in English | LILACS | ID: lil-539306

ABSTRACT

Insect-borne diseases are responsible for severe mortality and morbidity worldwide. As control of insect vector populations relies primarily on the use of insecticides, the emergence of insecticide resistance as well to unintended consequences of insecticide use pose significant challenges to their continued application. Novel approaches to reduce pathogen transmission by disease vectors are been attempted, including transmission-blocking vaccines (TBVs) thought to be a feasible strategy to reduce pathogen burden in endemic areas. TBVs aim at preventing the transmission of pathogens from infected to uninfected vertebrate host by targeting molecule(s) expressed on the surface of pathogens during their developmental phase within the insect vector or by targeting molecules expressed by the vectors. For pathogen-based molecules, the majority of the TBV candidates selected as well as most of the data available regarding the effectiveness of this approach come from studies using malaria parasites. However, TBV candidates also have been identified from midgut tissues of mosquitoes and sand flies. In spite of the successes achieved in the potential application of TBVs against insect-borne diseases, many significant barriers remain. In this review, many of the TBV strategies against insect-borne pathogens and their respective ramification with regards to the immune response of the vertebrate host are discussed.


Subject(s)
Animals , Humans , Antigens, Protozoan/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis/prevention & control , Malaria Vaccines/immunology , Malaria/prevention & control , Diptera/immunology , Diptera/parasitology , Insect Vectors/immunology , Insect Vectors/parasitology
4.
Parasit Vectors ; 1(1): 37, 2008 Oct 03.
Article in English | MEDLINE | ID: mdl-18834535

ABSTRACT

In our recently published article "Lutzomyia longipalpis s.l. in Brazil and the impact of the Sao Francisco River in the speciation of this sand fly vector" by Iliano V. Coutinho-Abreu et al. a sentence located in paragraph 8 in the Discussion section had its meaning altered due to the improper insertion of three words.

5.
Parasit Vectors ; 1(1): 16, 2008 06 12.
Article in English | MEDLINE | ID: mdl-18549496

ABSTRACT

Lutzomyia longipalpis s.l. (Diptera: Psychodidae) is the principal vector of Leishmania infantum chagasi in the Americas, and constitutes a complex of species. Various studies have suggested an incipient speciation process based on behavioral isolation driven by the chemotype of male sexual pheromones. It is well known that natural barriers, such as mountains and rivers can directly influence population divergence in several organisms, including insects. In this work we investigated the potential role played by the Sao Francisco River in eastern Brazil in defining the current distribution of Lu. longipalpis s.l. Our studies were based on analyses of polymorphisms of the cytochrome b gene (cyt b) sequences from Lu. longipalpis s.l. available in public databases, and from additional field-caught individuals. Altogether, 9 distinct populations and 89 haplotypes were represented in the analyses. Lu. longipalpis s.l. populations were grouped according to their distribution in regards to the 10 degrees S parallel: north of 10 degrees S (<10 degrees S); and south of 10 degrees S (>10 degrees S). Our results suggest that although no polymorphisms were fixed, moderate genetic divergences were observed between the groups analyzed (i.e., FST = 0.184; and Nm = 2.22), and were mostly driven by genetic drift. The population divergence time estimated between the sand fly groups was about 0.45 million years (MY), coinciding with the time of the change in the course of the Sao Francisco River, during the Mindel glaciation. Overall, the polymorphisms on the cyt b haplotypes and the current speciation process detected in Lu. longipalpis s.l. with regards to the distribution of male sexual pheromones suggest a role of the Sao Francisco River as a significant geographical barrier in this process.

SELECTION OF CITATIONS
SEARCH DETAIL