Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Trends Genet ; 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38926010

The dark genome, the nonprotein-coding part of the genome, is replete with long noncoding RNAs (lncRNAs). These functionally versatile transcripts, with specific temporal and spatial expression patterns, are critical gene regulators that play essential roles in health and disease. In recent years, FAAH-OUT was identified as the first lncRNA associated with an inherited human pain insensitivity disorder. Several other lncRNAs have also been studied for their contribution to chronic pain and genome-wide association studies are frequently identifying single nucleotide polymorphisms that map to lncRNAs. For a long time overlooked, lncRNAs are coming out of the dark and into the light as major players in human pain pathways and as potential targets for new RNA-based analgesic medicines.

2.
Pain ; 165(7): 1592-1604, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38293826

ABSTRACT: Visceral pain is a leading cause of morbidity in inflammatory bowel disease (IBD), contributing significantly to reduced quality of life. Currently available analgesics often lack efficacy or have intolerable side effects, driving the need for a more complete understanding of the mechanisms causing pain. Whole transcriptome gene expression analysis was performed by bulk RNA sequencing of colonic biopsies from patients with ulcerative colitis (UC) and Crohn's disease (CD) reporting abdominal pain and compared with noninflamed control biopsies. Potential pronociceptive mediators were identified based on gene upregulation in IBD biopsy tissue and cognate receptor expression in murine colonic sensory neurons. Pronociceptive activity of identified mediators was assessed in assays of sensory neuron and colonic afferent activity. RNA sequencing analysis highlighted a 7.6-fold increase in the expression of angiotensinogen transcripts, Agt , which encode the precursor to angiotensin II (Ang II), in samples from UC patients ( P = 3.2 × 10 -8 ). Consistent with the marked expression of the angiotensin AT 1 receptor in colonic sensory neurons, Ang II elicited an increase in intracellular Ca 2+ in capsaicin-sensitive, voltage-gated sodium channel subtype Na V 1.8-positive sensory neurons. Ang II also evoked action potential discharge in high-threshold colonic nociceptors. These effects were inhibited by the AT 1 receptor antagonist valsartan. Findings from our study identify AT 1 receptor-mediated colonic nociceptor activation as a novel pathway of visceral nociception in patients with UC. This work highlights the potential utility of angiotensin receptor blockers, such as valsartan, as treatments for pain in IBD.


Angiotensin II , Gene Expression Profiling , Inflammatory Bowel Diseases , Humans , Animals , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/genetics , Mice , Male , Female , Colon/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Adult , Middle Aged , Mice, Inbred C57BL , Nociceptors/metabolism , Transcriptome
3.
eNeuro ; 10(9)2023 09.
Article En | MEDLINE | ID: mdl-37679042

Drive from peripheral neurons is essential in almost all pain states, but pharmacological silencing of these neurons to effect analgesia has proved problematic. Reversible gene therapy using long-lived chemogenetic approaches is an appealing option. We used the genetically activated chloride channel PSAM4-GlyR to examine pain pathways in mice. Using recombinant AAV9-based delivery to sensory neurons, we found a reversal of acute pain behavior and diminished neuronal activity using in vitro and in vivo GCaMP imaging on activation of PSAM4-GlyR with varenicline. A significant reduction in inflammatory heat hyperalgesia and oxaliplatin-induced cold allodynia was also observed. Importantly, there was no impairment of motor coordination, but innocuous von Frey sensation was inhibited. We generated a transgenic mouse that expresses a CAG-driven FLExed PSAM4-GlyR downstream of the Rosa26 locus that requires Cre recombinase to enable the expression of PSAM4-GlyR and tdTomato. We used NaV1.8 Cre to examine the role of predominantly nociceptive NaV1.8+ neurons in cancer-induced bone pain (CIBP) and neuropathic pain caused by chronic constriction injury (CCI). Varenicline activation of PSAM4-GlyR in NaV1.8-positive neurons reversed CCI-driven mechanical, thermal, and cold sensitivity. Additionally, varenicline treatment of mice with CIBP expressing PSAM4-GlyR in NaV1.8+ sensory neurons reversed cancer pain as assessed by weight-bearing. Moreover, when these mice were subjected to acute pain assays, an elevation in withdrawal thresholds to noxious mechanical and thermal stimuli was detected, but innocuous mechanical sensations remained unaffected. These studies confirm the utility of PSAM4-GlyR chemogenetic silencing in chronic pain states for mechanistic analysis and potential future therapeutic use.


Acute Pain , Cancer Pain , Neoplasms , Mice , Animals , Cancer Pain/therapy , Cancer Pain/metabolism , Acute Pain/metabolism , Varenicline , Sensory Receptor Cells/physiology , Hyperalgesia/metabolism , Mice, Transgenic , Neoplasms/metabolism , Ganglia, Spinal/metabolism
4.
Brain ; 146(9): 3851-3865, 2023 09 01.
Article En | MEDLINE | ID: mdl-37222214

Chronic pain affects millions of people worldwide and new treatments are needed urgently. One way to identify novel analgesic strategies is to understand the biological dysfunctions that lead to human inherited pain insensitivity disorders. Here we report how the recently discovered brain and dorsal root ganglia-expressed FAAH-OUT long non-coding RNA (lncRNA) gene, which was found from studying a pain-insensitive patient with reduced anxiety and fast wound healing, regulates the adjacent key endocannabinoid system gene FAAH, which encodes the anandamide-degrading fatty acid amide hydrolase enzyme. We demonstrate that the disruption in FAAH-OUT lncRNA transcription leads to DNMT1-dependent DNA methylation within the FAAH promoter. In addition, FAAH-OUT contains a conserved regulatory element, FAAH-AMP, that acts as an enhancer for FAAH expression. Furthermore, using transcriptomic analyses in patient-derived cells we have uncovered a network of genes that are dysregulated from disruption of the FAAH-FAAH-OUT axis, thus providing a coherent mechanistic basis to understand the human phenotype observed. Given that FAAH is a potential target for the treatment of pain, anxiety, depression and other neurological disorders, this new understanding of the regulatory role of the FAAH-OUT gene provides a platform for the development of future gene and small molecule therapies.


RNA, Long Noncoding , Humans , Pain/genetics , Analgesics , Ganglia, Spinal
5.
Nat Commun ; 14(1): 2442, 2023 04 28.
Article En | MEDLINE | ID: mdl-37117223

Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.


Toxins, Biological , Urtica dioica , Australia , Pain , Peptides , NAV1.7 Voltage-Gated Sodium Channel/metabolism
6.
Nat Rev Dis Primers ; 8(1): 41, 2022 06 16.
Article En | MEDLINE | ID: mdl-35710757

Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.


Channelopathies , Hereditary Sensory and Autonomic Neuropathies , Pain Insensitivity, Congenital , Hereditary Sensory and Autonomic Neuropathies/complications , Hereditary Sensory and Autonomic Neuropathies/diagnosis , Hereditary Sensory and Autonomic Neuropathies/genetics , Humans , Pain/genetics , Pain Insensitivity, Congenital/genetics
7.
Eur J Pharmacol ; 925: 175013, 2022 Jun 15.
Article En | MEDLINE | ID: mdl-35537491

QX-314 is a quaternary permanently charged lidocaine derivative that inhibits voltage-gated sodium channels (NaV). As it is membrane impermeable, it is generally considered that QX-314 applied externally is inactive, unless it can gain access to the internal local anesthetic binding site via another entry pathway. Here, we characterized the electrophysiological effects of QX-314 on NaV1.7 heterologously expressed in HEK293 cells, and found that at high concentrations, external QX-314 inhibited NaV1.7 current (IC50 2.0 ± 0.3 mM) and shifted the voltage-dependence to more depolarized potentials (ΔV50 +10.6 mV). Unlike lidocaine, the activity of external QX-314 was not state- or use-dependent. The effect of externally applied QX-314 on NaV1.7 channel biophysics differed to that of internally applied QX-314, suggesting QX-314 has an additional externally accessible site of action. In line with this hypothesis, disruption of the local anesthetic binding site in a [F1748A]NaV1.7 mutant reduced the potency of lidocaine by 40-fold, but had no effect on the potency or activity of externally applied QX-314. Therefore, we conclude, using an expression system where QX-314 was unable to cross the membrane, that externally applied QX-314 is able to inhibit NaV1.7 peak current at low millimolar concentrations.


Anesthetics, Local , Lidocaine , Anesthetics, Local/pharmacology , HEK293 Cells , Humans , Lidocaine/analogs & derivatives , Lidocaine/pharmacology , Sodium/metabolism , Sodium Channel Blockers/pharmacology
8.
Neuron ; 109(9): 1497-1512.e6, 2021 05 05.
Article En | MEDLINE | ID: mdl-33823138

Deletion of SCN9A encoding the voltage-gated sodium channel NaV1.7 in humans leads to profound pain insensitivity and anosmia. Conditional deletion of NaV1.7 in sensory neurons of mice also abolishes pain, suggesting that the locus of analgesia is the nociceptor. Here we demonstrate, using in vivo calcium imaging and extracellular recording, that NaV1.7 knockout mice have essentially normal nociceptor activity. However, synaptic transmission from nociceptor central terminals in the spinal cord is greatly reduced by an opioid-dependent mechanism. Analgesia is also reversed substantially by central but not peripheral application of opioid antagonists. In contrast, the lack of neurotransmitter release from olfactory sensory neurons is opioid independent. Male and female humans with NaV1.7-null mutations show naloxone-reversible analgesia. Thus, inhibition of neurotransmitter release is the principal mechanism of anosmia and analgesia in mouse and human Nav1.7-null mutants.


Analgesia , NAV1.7 Voltage-Gated Sodium Channel/deficiency , Olfactory Receptor Neurons/metabolism , Pain/genetics , Synaptic Transmission/physiology , Adult , Animals , Female , Humans , Male , Mice , NAV1.7 Voltage-Gated Sodium Channel/genetics , Olfaction Disorders/congenital , Olfaction Disorders/genetics
9.
Wellcome Open Res ; 6: 250, 2021.
Article En | MEDLINE | ID: mdl-35233469

Background: Somatosensation depends on primary sensory neurons of the trigeminal and dorsal root ganglia (DRG). Transcriptional profiling of mouse DRG sensory neurons has defined at least 18 distinct neuronal cell types. Using an advillin promoter, we have generated a transgenic mouse line that only expresses diphtheria toxin A (DTA) in sensory neurons in the presence of Cre recombinase. This has allowed us to ablate specific neuronal subsets within the DRG using a range of established and novel Cre lines that encompass all sets of sensory neurons.    Methods: A floxed-tdTomato-stop-DTA bacterial artificial chromosome (BAC) transgenic reporter line (AdvDTA) under the control of the mouse advillin DRG promoter was generated. The line was first validated using a Na v1.8 Cre and then crossed to CGRP CreER (Calca), Th CreERT2, Tmem45b Cre, Tmem233 Cre, Ntng1 Cre and TrkB CreER (Ntrk2) lines. Pain behavioural assays included Hargreaves', hot plate, Randall-Selitto, cold plantar, partial sciatic nerve ligation and formalin tests. Results: Motor activity, as assessed by the rotarod test, was normal for all lines tested. Noxious mechanosensation was significantly reduced when either Na v1.8 positive neurons or Tmem45b positive neurons were ablated whilst acute heat pain was unaffected. In contrast, noxious mechanosensation was normal following ablation of CGRP-positive neurons but acute heat pain thresholds were significantly elevated and a reduction in nocifensive responses was observed in the second phase of the formalin test. Ablation of TrkB-positive neurons led to significant deficits in mechanical hypersensitivity in the partial sciatic nerve ligation neuropathic pain model. Conclusions: Ablation of specific DRG neuronal subsets using the AdvDTA line will be a useful resource for further functional characterization of somatosensory processing, neuro-immune interactions and chronic pain disorders.

10.
Front Pharmacol ; 12: 789570, 2021.
Article En | MEDLINE | ID: mdl-35095499

Venoms from cone snails and arachnids are a rich source of peptide modulators of voltage-gated sodium (NaV) channels, however relatively few venom-derived peptides with activity at the mammalian NaV1.8 subtype have been isolated. Here, we describe the discovery and functional characterisation of ß-theraphotoxin-Eo1a, a peptide from the venom of the Tanzanian black and olive baboon tarantula Encyocratella olivacea that modulates NaV1.8. Eo1a is a 37-residue peptide that increases NaV1.8 peak current (EC50 894 ± 146 nM) and causes a large hyperpolarising shift in both the voltage-dependence of activation (ΔV50-20.5 ± 1.2 mV) and steady-state fast inactivation (ΔV50-15.5 ± 1.8 mV). At a concentration of 10 µM, Eo1a has varying effects on the peak current and channel gating of NaV1.1-NaV1.7, although its activity is most pronounced at NaV1.8. Investigations into the binding site of Eo1a using NaV1.7/NaV1.8 chimeras revealed a critical contribution of the DII S3-S4 extracellular loop of NaV1.8 to toxin activity. Results from this work may form the basis for future studies that lead to the rational design of spider venom-derived peptides with improved potency and selectivity at NaV1.8.

11.
Sci Adv ; 6(8): eaax4568, 2020 02.
Article En | MEDLINE | ID: mdl-32128393

Expression of the voltage-gated sodium channel NaV1.7 in sensory neurons is required for pain sensation. We examined the role of NaV1.7 in the dorsal horn of the spinal cord using an epitope-tagged NaV1.7 knock-in mouse. Immuno-electron microscopy showed the presence of NaV1.7 in dendrites of superficial dorsal horn neurons, despite the absence of mRNA. Rhizotomy of L5 afferent nerves lowered the levels of NaV1.7 in the dorsal horn. Peripheral nervous system-specific NaV1.7 null mutant mice showed central deficits, with lamina II dorsal horn tonic firing neurons more than halved and single spiking neurons more than doubled. NaV1.7 blocker PF05089771 diminished excitability in dorsal horn neurons but had no effect on NaV1.7 null mutant mice. These data demonstrate an unsuspected functional role of primary afferent neuron-generated NaV1.7 in dorsal horn neurons and an expression pattern that would not be predicted by transcriptomic analysis.


NAV1.7 Voltage-Gated Sodium Channel/genetics , Posterior Horn Cells/physiology , Sensory Receptor Cells/physiology , Animals , Electrophysiological Phenomena , Excitatory Postsynaptic Potentials , Gene Expression , Immunohistochemistry , Mice , Mice, Knockout , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Posterior Horn Cells/drug effects , Posterior Horn Cells/ultrastructure , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/ultrastructure , Voltage-Gated Sodium Channel Blockers/pharmacology
12.
Br J Anaesth ; 123(2): e249-e253, 2019 Aug.
Article En | MEDLINE | ID: mdl-30929760

The study of rare families with inherited pain insensitivity can identify new human-validated analgesic drug targets. Here, a 66-yr-old female presented with nil requirement for postoperative analgesia after a normally painful orthopaedic hand surgery (trapeziectomy). Further investigations revealed a lifelong history of painless injuries, such as frequent cuts and burns, which were observed to heal quickly. We report the causative mutations for this new pain insensitivity disorder: the co-inheritance of (i) a microdeletion in dorsal root ganglia and brain-expressed pseudogene, FAAH-OUT, which we cloned from the fatty-acid amide hydrolase (FAAH) chromosomal region; and (ii) a common functional single-nucleotide polymorphism in FAAH conferring reduced expression and activity. Circulating concentrations of anandamide and related fatty-acid amides (palmitoylethanolamide and oleoylethanolamine) that are all normally degraded by FAAH were significantly elevated in peripheral blood compared with normal control carriers of the hypomorphic single-nucleotide polymorphism. The genetic findings and elevated circulating fatty-acid amides are consistent with a phenotype resulting from enhanced endocannabinoid signalling and a loss of function of FAAH. Our results highlight previously unknown complexity at the FAAH genomic locus involving the expression of FAAH-OUT, a novel pseudogene and long non-coding RNA. These data suggest new routes to develop FAAH-based analgesia by targeting of FAAH-OUT, which could significantly improve the treatment of postoperative pain and potentially chronic pain and anxiety disorders.


Amidohydrolases/genetics , Arachidonic Acids/blood , Endocannabinoids/blood , Pain Insensitivity, Congenital/blood , Pain Insensitivity, Congenital/genetics , Polyunsaturated Alkamides/blood , Pseudogenes/genetics , Aged , Amidohydrolases/blood , Female , Humans , Polymorphism, Single Nucleotide/genetics
13.
Wellcome Open Res ; 3: 78, 2018.
Article En | MEDLINE | ID: mdl-30079380

Background: Sensory neurons play an essential role in almost all pain conditions, and have recently been classified into distinct subsets on the basis of their transcriptomes. Here we have analysed alterations in dorsal root ganglia (DRG) gene expression using microarrays in mouse models related to human chronic pain. Methods: Six different pain models were studied in male C57BL/6J mice: (1) bone cancer pain using cancer cell injection in the intramedullary space of the femur; (2) neuropathic pain using partial sciatic nerve ligation; (3) osteoarthritis pain using mechanical joint loading; (4) chemotherapy-induced pain with oxaliplatin; (5) chronic muscle pain using hyperalgesic priming; and (6) inflammatory pain using intraplantar complete Freund's adjuvant. Microarray analyses were performed using RNA isolated from dorsal root ganglia and compared to sham/vehicle treated controls. Results: Differentially expressed genes (DEGs) were identified. Known and previously unreported genes were found to be dysregulated in each pain model. The transcriptomic profiles for each model were compared and expression profiles of DEGs within subsets of DRG neuronal populations were analysed to determine whether specific neuronal subsets could be linked to each of the pain models.  Conclusions: Each pain model exhibits a unique set of altered transcripts implying distinct cellular responses to different painful stimuli. No simple direct link between genetically distinct sets of neurons and particular pain models could be discerned.

14.
EMBO J ; 37(3): 427-445, 2018 02 01.
Article En | MEDLINE | ID: mdl-29335280

The voltage-gated sodium channel NaV1.7 plays a critical role in pain pathways. We generated an epitope-tagged NaV1.7 mouse that showed normal pain behaviours to identify channel-interacting proteins. Analysis of NaV1.7 complexes affinity-purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo The sodium channel ß3 (Scn3b), rather than the ß1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing-response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel NaV1.7 protein interactors including membrane-trafficking protein synaptotagmin-2 (Syt2), L-type amino acid transporter 1 (Lat1) and transmembrane P24-trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co-immunoprecipitation (Co-IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein-regulated inducer of neurite outgrowth (Gprin1), an opioid receptor-binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope-tagged mouse should provide useful insights into the many functions now associated with the NaV1.7 channel.


NAV1.7 Voltage-Gated Sodium Channel/metabolism , Nerve Tissue Proteins/metabolism , Pain/physiopathology , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Opioid/metabolism , Sensory Receptor Cells/metabolism , Acetamides/pharmacology , Analgesics/pharmacology , Animals , Cell Line , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Lacosamide , Mice , Mice, Inbred C57BL , Mice, Transgenic , NAV1.7 Voltage-Gated Sodium Channel/genetics , Protein Binding , Protein Interaction Mapping , Protein Transport/physiology , Synaptotagmin II/metabolism , Vesicular Transport Proteins/metabolism , Voltage-Gated Sodium Channel beta-3 Subunit/metabolism
15.
Annu Rev Pharmacol Toxicol ; 58: 123-142, 2018 01 06.
Article En | MEDLINE | ID: mdl-28968191

Pain is an increasing clinical challenge affecting about half the population, with a substantial number of people suffering daily intense pain. Such suffering can be linked to the dramatic rise in opioid use and associated deaths in the United States. There is a pressing need for new analgesics with limited side effects. Here, we summarize what we know about the genetics of pain and implications for drug development. We make the case that chronic pain is not one but a set of disease states, with peripheral drive a key element in most. We argue that understanding redundancy and plasticity, hallmarks of the nervous system, is critical in developing analgesic drug strategies. We describe the exploitation of monogenic pain syndromes and genetic association studies to define analgesic targets, as well as issues associated with animal models of pain. We appraise present-day screening technologies and describe recent approaches to pain treatment that hold promise.


Analgesics/therapeutic use , Chronic Pain/drug therapy , Chronic Pain/genetics , Animals , Drug Development/methods , Genetics , Humans , United States
16.
Pain ; 159(3): 469-480, 2018 03.
Article En | MEDLINE | ID: mdl-29176367

Diabetic peripheral neuropathy (DPN) is a common disabling complication of diabetes. Almost half of the patients with DPN develop neuropathic pain (NeuP) for which current analgesic treatments are inadequate. Understanding the role of genetic variability in the development of painful DPN is needed for improved understanding of pain pathogenesis for better patient stratification in clinical trials and to target therapy more appropriately. Here, we examined the relationship between variants in the voltage-gated sodium channel NaV1.7 and NeuP in a deeply phenotyped cohort of patients with DPN. Although no rare variants were found in 78 participants with painless DPN, we identified 12 rare NaV1.7 variants in 10 (out of 111) study participants with painful DPN. Five of these variants had previously been described in the context of other NeuP disorders and 7 have not previously been linked to NeuP. Those patients with rare variants reported more severe pain and greater sensitivity to pressure stimuli on quantitative sensory testing. Electrophysiological characterization of 2 of the novel variants (M1852T and T1596I) demonstrated that gain of function changes as a consequence of markedly impaired channel fast inactivation. Using a structural model of NaV1.7, we were also able to provide further insight into the structural mechanisms underlying fast inactivation and the role of the C-terminal domain in this process. Our observations suggest that rare NaV1.7 variants contribute to the development NeuP in patients with DPN. Their identification should aid understanding of sensory phenotype, patient stratification, and help target treatments effectively.


Diabetic Neuropathies/genetics , Genetic Variation/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics , Adult , Aged , Cohort Studies , Female , Genetic Association Studies , HEK293 Cells , Humans , Male , Membrane Potentials/genetics , Middle Aged , Models, Molecular , Mutagenesis, Site-Directed , Pain Measurement , Patch-Clamp Techniques , Severity of Illness Index , Transfection
17.
Brain ; 141(2): 365-376, 2018 02 01.
Article En | MEDLINE | ID: mdl-29253101

Chronic pain is a major global public health issue causing a severe impact on both the quality of life for sufferers and the wider economy. Despite the significant clinical burden, little progress has been made in terms of therapeutic development. A unique approach to identifying new human-validated analgesic drug targets is to study rare families with inherited pain insensitivity. Here we have analysed an otherwise normal family where six affected individuals display a pain insensitive phenotype that is characterized by hyposensitivity to noxious heat and painless bone fractures. This autosomal dominant disorder is found in three generations and is not associated with a peripheral neuropathy. A novel point mutation in ZFHX2, encoding a putative transcription factor expressed in small diameter sensory neurons, was identified by whole exome sequencing that segregates with the pain insensitivity. The mutation is predicted to change an evolutionarily highly conserved arginine residue 1913 to a lysine within a homeodomain. Bacterial artificial chromosome (BAC) transgenic mice bearing the orthologous murine p.R1907K mutation, as well as Zfhx2 null mutant mice, have significant deficits in pain sensitivity. Gene expression analyses in dorsal root ganglia from mutant and wild-type mice show altered expression of genes implicated in peripheral pain mechanisms. The ZFHX2 variant and downstream regulated genes associated with a human pain-insensitive phenotype are therefore potential novel targets for the development of new analgesic drugs.awx326media15680039660001.


Pain Insensitivity, Congenital/genetics , Pain Threshold/physiology , Pain/physiopathology , Point Mutation/genetics , Zinc Finger E-box Binding Homeobox 2/genetics , Action Potentials/drug effects , Action Potentials/physiology , Adolescent , Adult , Aged , Animals , Calcium/metabolism , Capsaicin/adverse effects , Disease Models, Animal , Female , Ganglia, Spinal/pathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Hyperalgesia/pathology , Hyperalgesia/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Pain/chemically induced , Pain Insensitivity, Congenital/pathology , Pain Insensitivity, Congenital/physiopathology , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology , Skin/pathology , Young Adult
18.
Nat Commun ; 6: 8967, 2015 Dec 04.
Article En | MEDLINE | ID: mdl-26634308

Loss-of-function mutations in the SCN9A gene encoding voltage-gated sodium channel Nav1.7 cause congenital insensitivity to pain in humans and mice. Surprisingly, many potent selective antagonists of Nav1.7 are weak analgesics. We investigated whether Nav1.7, as well as contributing to electrical signalling, may have additional functions. Here we report that Nav1.7 deletion has profound effects on gene expression, leading to an upregulation of enkephalin precursor Penk mRNA and met-enkephalin protein in sensory neurons. In contrast, Nav1.8-null mutant sensory neurons show no upregulated Penk mRNA expression. Application of the opioid antagonist naloxone potentiates noxious peripheral input into the spinal cord and dramatically reduces analgesia in both female and male Nav1.7-null mutant mice, as well as in a human Nav1.7-null mutant. These data suggest that Nav1.7 channel blockers alone may not replicate the analgesic phenotype of null mutant humans and mice, but may be potentiated with exogenous opioids.


Enkephalins/metabolism , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain Insensitivity, Congenital/metabolism , Adult , Animals , Enkephalins/genetics , Female , Humans , Male , Mice , Mice, Knockout , NAV1.7 Voltage-Gated Sodium Channel/genetics , Pain Insensitivity, Congenital/genetics , Pain Insensitivity, Congenital/physiopathology , Sensation , Sensory Receptor Cells/metabolism
19.
PLoS One ; 10(6): e0128830, 2015.
Article En | MEDLINE | ID: mdl-26035178

The Nav1.7 voltage-gated sodium channel, encoded by SCN9A, is critical for human pain perception yet the transcriptional and post-transcriptional mechanisms that regulate this gene are still incompletely understood. Here, we describe a novel natural antisense transcript (NAT) for SCN9A that is conserved in humans and mice. The NAT has a similar tissue expression pattern to the sense gene and is alternatively spliced within dorsal root ganglia. The human and mouse NATs exist in cis with the sense gene in a tail-to-tail orientation and both share sequences that are complementary to the terminal exon of SCN9A/Scn9a. Overexpression analyses of the human NAT in human embryonic kidney (HEK293A) and human neuroblastoma (SH-SY5Y) cell lines show that it can function to downregulate Nav1.7 mRNA, protein levels and currents. The NAT may play an important role in regulating human pain thresholds and is a potential candidate gene for individuals with chronic pain disorders that map to the SCN9A locus, such as Inherited Primary Erythromelalgia, Paroxysmal Extreme Pain Disorder and Painful Small Fibre Neuropathy, but who do not contain mutations in the sense gene. Our results strongly suggest the SCN9A NAT as a prime candidate for new therapies based upon augmentation of existing antisense RNAs in the treatment of chronic pain conditions in man.


Ganglia, Spinal/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , RNA, Antisense/metabolism , Animals , Cloning, Molecular , Computer Simulation , Conserved Sequence , Gene Expression Regulation , HEK293 Cells , Humans , Mice , NAV1.7 Voltage-Gated Sodium Channel/chemistry , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/genetics , Pain/metabolism , RNA, Antisense/chemistry , RNA, Messenger/metabolism
20.
J Neurosci ; 35(20): 7674-81, 2015 May 20.
Article En | MEDLINE | ID: mdl-25995458

The importance of NaV1.7 (encoded by SCN9A) in the regulation of pain sensing is exemplified by the heterogeneity of clinical phenotypes associated with its mutation. Gain-of-function mutations are typically pain-causing and have been associated with inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). IEM is usually caused by enhanced NaV1.7 channel activation, whereas mutations that alter steady-state fast inactivation often lead to PEPD. In contrast, nonfunctional mutations in SCN9A are known to underlie congenital insensitivity to pain (CIP). Although well documented, the correlation between SCN9A genotypes and clinical phenotypes is still unclear. Here we report three families with novel SCN9A mutations. In a multiaffected dominant family with IEM, we found the heterozygous change L245 V. Electrophysiological characterization showed that this mutation did not affect channel activation but instead resulted in incomplete fast inactivation and a small hyperpolarizing shift in steady-state slow inactivation, characteristics more commonly associated with PEPD. In two compound heterozygous CIP patients, we found mutations that still retained functionality of the channels, with two C-terminal mutations (W1775R and L1831X) exhibiting a depolarizing shift in channel activation. Two mutations (A1236E and L1831X) resulted in a hyperpolarizing shift in steady-state fast inactivation. To our knowledge, these are the first descriptions of mutations with some retained channel function causing CIP. This study emphasizes the complex genotype-phenotype correlations that exist for SCN9A and highlights the C-terminal cytoplasmic region of NaV1.7 as a critical region for channel function, potentially facilitating analgesic drug development studies.


Erythromelalgia/genetics , Ion Channel Gating , Mutation, Missense , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain Insensitivity, Congenital/genetics , Pain/genetics , Rectum/abnormalities , Child , Erythromelalgia/metabolism , Female , HEK293 Cells , Humans , Male , NAV1.7 Voltage-Gated Sodium Channel/chemistry , NAV1.7 Voltage-Gated Sodium Channel/genetics , Pain/metabolism , Pain Insensitivity, Congenital/metabolism , Pedigree , Phenotype , Protein Structure, Tertiary , Rectum/metabolism
...