Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Front Immunol ; 15: 1343020, 2024.
Article in English | MEDLINE | ID: mdl-38318190

ABSTRACT

The intricate relationship between anti-tumor immunity and autoimmunity is a complex yet crucial aspect of cancer biology. Tumor microenvironment often exhibits autoimmune features, a phenomenon that involves natural autoimmunity and the induction of humoral responses against self-antigens during tumorigenesis. This induction is facilitated by the orchestration of anti-tumor immunity, particularly within organized structures like tertiary lymphoid structures (TLS). Paradoxically, a significant number of cancer patients do not manifest autoimmune features during the course of their illness, with rare instances of paraneoplastic syndromes. This discrepancy can be attributed to various immune-mediated locks, including regulatory or suppressive immune cells, anergic autoreactive lymphocytes, or induction of effector cells exhaustion due to chronic stimulation. Overcoming these locks holds the risk to induce autoimmune mechanisms during cancer progression, a phenomenon notably observed with anti-immune checkpoint therapies, in contrast to more conventional treatments like chemotherapy or radiotherapy. Therefore, the challenge arises in managing immune-related adverse events (irAEs) induced by immune checkpoint inhibitors treatment, as decoupling them from the anti-tumor activity poses a significant clinical dilemma. This review summarizes recent advances in understanding the link between B-cell driven anti-tumor responses and autoimmune reactions in cancer patients, and discusses the clinical implications of this relationship.


Subject(s)
Autoimmunity , Neoplasms , Humans , Autoantibodies , Neoplasms/drug therapy , Autoantigens , Antibodies, Monoclonal/therapeutic use , Tumor Microenvironment
2.
Cancer Immunol Res ; 11(4): 530-545, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36883368

ABSTRACT

One billion people worldwide get flu every year, including patients with non-small cell lung cancer (NSCLC). However, the impact of acute influenza A virus (IAV) infection on the composition of the tumor microenvironment (TME) and the clinical outcome of patients with NSCLC is largely unknown. We set out to understand how IAV load impacts cancer growth and modifies cellular and molecular players in the TME. Herein, we report that IAV can infect both tumor and immune cells, resulting in a long-term protumoral effect in tumor-bearing mice. Mechanistically, IAV impaired tumor-specific T-cell responses, led to the exhaustion of memory CD8+ T cells and induced PD-L1 expression on tumor cells. IAV infection modulated the transcriptomic profile of the TME, fine-tuning it toward immunosuppression, carcinogenesis, and lipid and drug metabolism. Consistent with these data, the transcriptional module induced by IAV infection in tumor cells in tumor-bearing mice was also found in human patients with lung adenocarcinoma and correlated with poor overall survival. In conclusion, we found that IAV infection worsened lung tumor progression by reprogramming the TME toward a more aggressive state.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Influenza A virus , Influenza, Human , Lung Neoplasms , Orthomyxoviridae Infections , Humans , Animals , Mice , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Tumor Microenvironment , CD8-Positive T-Lymphocytes , Lung , Orthomyxoviridae Infections/pathology
4.
Cancers (Basel) ; 14(14)2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35884522

ABSTRACT

Autophagy is a self-degradative mechanism involved in many biological processes, including cell death, survival, proliferation or migration. In tumors, autophagy plays an important role in tumorigenesis as well as cancer progression and resistance to therapies. Usually, a high level of autophagy in malignant cells has been associated with tumor progression and poor prognostic for patients. However, the investigation of autophagy levels in patients remains difficult, especially because quantification of autophagy proteins is challenging in the tumor microenvironment. In this study, we analyzed the expression of autophagy genes in non-small cell lung (NSCLC) cancer patients using public datasets and revealed an autophagy gene signature for proliferative and immune-checkpoint-expressed malignant cells in lung adenocarcinoma (LUAD). Analysis of autophagy-related gene expression profiles in tumor and adjacent tissues revealed differential signatures, namely signature A (23 genes) and signature B (12 genes). Signature B correlated with a bad prognosis and poor overall and disease-specific survival. Univariate and multivariate analyses revealed that this signature was an independent factor for prognosis. Moreover, patients with high expression of signature B exhibited more genes related to proliferation and fewer genes related to immune cells or immune response. The analysis of datasets from sorted fresh tumor cells or single cells revealed that signature B is predominantly represented in malignant cells, with poor expression in pan-immune population or in fibroblast or endothelial cells. Interestingly, autophagy was increased in malignant cells exhibiting high levels of signature B, which correlated with an elevated expression of genes involved in cell proliferation and immune checkpoint signaling. Taken together, our analysis reveals a novel autophagy-based signature to define the metabolic and immunogenic status of malignant cells in LUAD.

5.
Lung Cancer ; 169: 13-21, 2022 07.
Article in English | MEDLINE | ID: mdl-35597058

ABSTRACT

INTRODUCTION: SMARCA4/BRG1 loss of expression occurs in 5-10% of non-small cell lung carcinomas (NSCLC). We investigated the pathological, molecular and immune environment characteristics of this deficiency among NSCLC, its impact on overall survival (OS) of resected patients and the sensitivity to anti-PD1 inhibitors in metastatic patients. MATERIALS AND METHODS: BRG1 expression was assessed by immunohistochemistry to identify SMARCA4-deficient NSCLC (SD-NSCLC) from the cancer tissue collection of Cochin Hospital (Paris, France). Molecular profiles were analyzed by targeted NGS covering 28 genes in 63 resected SD-NSCLC. The balance of immune cells between CD8+, FOXP3+ cells and neutrophils (CD66b+) was characterized by multiplex immunohistochemistry and compared to non-SD NSCLC. Clinical outcome after anti-PD-1 therapy was evaluated in 7 SD-NSCLC out of 77 NSCLC patients. RESULTS: SD-NSCLCs were more commonly found in TTF1-negative high-grade adenocarcinomas and pleomorphic carcinomas. They were associated with few targetable alterations (KRAS G12C and MET amplification). Their immune environment was characterized by an increased of FOXP3+ cell and neutrophil densities, but not of CD8+ T cells, compared to non-SD NSCLC. SD-NSCLC patients had a significantly shorter OS in early stages of resected patients and in metastatic patients treated by anti-PD1 treatment. CONCLUSION: BRG1-loss in NSCLC confers a poor prognosis and is associated with an immunosuppressive environment that could be responsible of limited efficacy to anti-PD1 inhibitors. The identification of SD-NSCLC by BRG1 immunohistochemistry is desirable for an optimal management of NSCLC patients.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adenocarcinoma/pathology , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , DNA Helicases/genetics , Forkhead Transcription Factors/genetics , Humans , Lung/pathology , Lung Neoplasms/pathology , Neutrophils/pathology , Nuclear Proteins/genetics , Transcription Factors/genetics
6.
Med Sci (Paris) ; 38(2): 159-167, 2022 Feb.
Article in French | MEDLINE | ID: mdl-35179470

ABSTRACT

Autophagy is an important process for cellular homeostasis at critical steps of development or in response to environmental stress. In the context of cancers, autophagy has a significant impact on tumor occurrence and tumor cell growth. On the one hand, autophagy limits the transformation of precancerous cells into cancer cells at an early stage. However, on the other hand, it promotes cell survival, cell proliferation, metastasis and resistance to anti-tumor therapies in more advanced tumors. Autophagy can be induced by a variety of extracellular and intracellular stimulus. Viral infections have often been associated with a modulation of autophagy, with variable impacts on viral replication and on the survival of infected cells depending on the model studied. In a tumor context, the modulation of autophagy induced by the viral infection of tumor cells seems to have a significant impact on tumor progression. The aim of this review article is to present recent findings regarding the consequences of autophagy disturbance by viral infections on tumor behavior.


TITLE: L'autophagie modulée par les virus - Un rôle dans la progression tumorale. ABSTRACT: L'autophagie est un processus métabolique important pour maintenir l'homéostasie cellulaire à des moments critiques du développement et/ou en réponse à un stress environnemental. Cela est particulièrement pertinent dans le cas des cancers, pour lesquels il a été montré que l'autophagie a un impact important sur leur survenue et sur la croissance tumorale. D'une part, elle limite la transformation cancéreuse des cellules précancéreuses à un stade précoce, mais, d'autre part, elle favorise la survie et la prolifération cellulaires, les métastases et la résistance aux thérapies anti-tumorales dans les tumeurs plus avancées. L'autophagie peut être induite par une grande variété de stimulus extracellulaires et intracellulaires. Les infections virales ont souvent été associées à une modulation de l'autophagie, dont l'impact sur la réplication virale ou la survie des cellules infectées diffère selon le modèle étudié. Dans un contexte tumoral, certains mécanismes moléculaires complexes par lesquels la modulation de l'autophagie par les virus peut influencer le développement des cellules précancéreuses ou cancéreuses ont été révélés. Cette revue présente les découvertes récentes concernant les répercussions d'une perturbation de l'autophagie par l'infection virale sur la survenue et la progression des tumeurs cancéreuses.


Subject(s)
Neoplasms , Viruses , Autophagy , Humans , Neoplasms/therapy , Neoplastic Processes , Virus Replication
7.
Front Oncol ; 11: 743780, 2021.
Article in English | MEDLINE | ID: mdl-34745965

ABSTRACT

Autophagy is a self-degradative process important for balancing cellular homeostasis at critical times in development and/or in response to nutrient stress. This is particularly relevant in tumor model in which autophagy has been demonstrated to have an important impact on tumor behavior. In one hand, autophagy limits tumor transformation of precancerous cells in early stage, and in the other hand, it favors the survival, proliferation, metastasis, and resistance to antitumor therapies in more advanced tumors. This catabolic machinery can be induced by an important variety of extra- and intracellular stimuli. For instance, viral infection has often been associated to autophagic modulation, and the role of autophagy in virus replication differs according to the virus studied. In the context of tumor development, virus-modulated autophagy can have an important impact on tumor cells' fate. Extensive analyses have shed light on the molecular and/or functional complex mechanisms by which virus-modulated autophagy influences precancerous or tumor cell development. This review includes an overview of discoveries describing the repercussions of an autophagy perturbation during viral infections on tumor behavior.

8.
Front Immunol ; 12: 701273, 2021.
Article in English | MEDLINE | ID: mdl-34322128

ABSTRACT

SARS-CoV-2 infection leads to a highly variable clinical evolution, ranging from asymptomatic to severe disease with acute respiratory distress syndrome, requiring intensive care units (ICU) admission. The optimal management of hospitalized patients has become a worldwide concern and identification of immune biomarkers predictive of the clinical outcome for hospitalized patients remains a major challenge. Immunophenotyping and transcriptomic analysis of hospitalized COVID-19 patients at admission allow identifying the two categories of patients. Inflammation, high neutrophil activation, dysfunctional monocytic response and a strongly impaired adaptive immune response was observed in patients who will experience the more severe form of the disease. This observation was validated in an independent cohort of patients. Using in silico analysis on drug signature database, we identify differential therapeutics that specifically correspond to each group of patients. From this signature, we propose a score-the SARS-Score-composed of easily quantifiable biomarkers, to classify hospitalized patients upon arrival to adapt treatment according to their immune profile.


Subject(s)
COVID-19/immunology , SARS-CoV-2/physiology , Adaptive Immunity/genetics , Adult , Aged , Antiviral Agents/therapeutic use , Biomarkers , COVID-19/therapy , Cohort Studies , Female , Hospitalization , Humans , Inflammation/genetics , Male , Middle Aged , Precision Medicine , Prospective Studies , Severity of Illness Index , Transcriptome
9.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: mdl-34162714

ABSTRACT

BACKGROUND: Tumors rewire their metabolism to achieve robust anabolism and resistance against therapeutic interventions like cisplatin treatment. For example, a prolonged exposure to cisplatin causes downregulation of pyridoxal kinase (PDXK), the enzyme that generates the active vitamin B6, and upregulation of poly ADP-ribose (PAR) polymerase-1 (PARP1) activity that requires a supply of nicotinamide (vitamin B3) adenine dinucleotide. We investigated the impact of the levels of PDXK and PAR on the local immunosurveillance (ie, density of the antigen presenting cells and adaptive immune response by CD8 T lymphocytes) in two different tumor types. METHODS: Tumors from patients with locally advanced cervical carcinoma (LACC) and non-small cell lung cancer (NSCLC) were stained for PAR, PDXK, dendritic cell lysosomal associated membrane glycoprotein (DC-LAMP) and CD8 T cell infiltration. Their correlations and prognostic impact were assessed. Cisplatin-resistant NSCLC cell clones isolated from Lewis-lung cancer (LLC) cells were evaluated for PAR levels by immunoblot. Parental (PARlow) and cisplatin-resistant (PARhigh) clones were subcutaneously injected into the flank of C57BL/6 mice. Tumors were harvested to evaluate their immune infiltration by flow cytometry. RESULTS: The infiltration of tumors by CD8 T and DC-LAMP+ cells was associated with a favorable overall survival in patients with LACC (p=0.006 and p=0.008, respectively) and NSCLC (p<0.001 for both CD8 T and DC-LAMP cells). We observed a positive correlation between PDXK expression and the infiltration by DC-LAMP (R=0.44, p=0.02 in LACC, R=0.14, p=0.057 in NSCLC), and a negative correlation between PAR levels and CD8 T lymphocytes (R=-0.39, p=0.034 in LACC, R=-0.18, p=0.017 in NSCLC). PARP1 is constitutively hyperactivated in cisplatin-resistant LLC cells manifesting elevated intracellular levels of poly(ADP-ribosyl)ated proteins (PARhigh). Tumors formed by such cancer cells injected into immunocompetent mice were scarcely infiltrated by CD8 T (p=0.028) and antigen presenting cells (p=0.086). CONCLUSIONS: Oncometabolic features can impact local immunosurveillance, providing new functional links between cisplatin resistance and therapeutic failure.


Subject(s)
Immunotherapy/methods , Monitoring, Immunologic/methods , Neoplasms/immunology , Animals , Disease Models, Animal , Female , Humans , Mice , Tumor Microenvironment/immunology
10.
Cancer Immunol Res ; 9(8): 909-925, 2021 08.
Article in English | MEDLINE | ID: mdl-34039652

ABSTRACT

The complement system is a powerful and druggable innate immune component of the tumor microenvironment. Nevertheless, it is challenging to elucidate the exact mechanisms by which complement affects tumor growth. In this study, we examined the processes by which the master complement regulator factor H (FH) affects clear cell renal cell carcinoma (ccRCC) and lung cancer, two cancers in which complement overactivation predicts poor prognosis. FH was present in two distinct cellular compartments: the membranous (mb-FH) and intracellular (int-FH) compartments. Int-FH resided in lysosomes and colocalized with C3. In ccRCC and lung adenocarcinoma, FH exerted protumoral action through an intracellular, noncanonical mechanism. FH silencing in ccRCC cell lines resulted in decreased proliferation, due to cell-cycle arrest and increased mortality, and this was associated with increased p53 phosphorylation and NFκB translocation to the nucleus. Moreover, the migration of the FH-silenced cells was reduced, likely due to altered morphology. These effects were cell type-specific because no modifications occurred upon CFH silencing in other FH-expressing cells tested: tubular cells (from which ccRCC originates), endothelial cells (human umbilical vein endothelial cells), and squamous cell lung cancer cells. Consistent with this, in ccRCC and lung adenocarcinoma, but not in lung squamous cell carcinoma, int-FH conferred poor prognosis in patient cohorts. Mb-FH performed its canonical function of complement regulation but had no impact on tumor cell phenotype or patient survival. The discovery of intracellular functions for FH redefines the role of the protein in tumor progression and its use as a prognostic biomarker or potential therapeutic target.See article by Daugan et al., p. 891 (36).


Subject(s)
Complement Activation/genetics , Complement Factor H/genetics , Animals , Cell Line , Disease Progression , Humans , Mice
11.
Cancer Immunol Res ; 9(8): 891-908, 2021 08.
Article in English | MEDLINE | ID: mdl-34039653

ABSTRACT

The complement system plays a complex role in cancer. In clear cell renal cell carcinoma (ccRCC), local production of complement proteins drives tumor progression, but the mechanisms by which they do this are poorly understood. We found that complement activation, as reflected by high plasma C4d or as C4d deposits at the tumor site, was associated with poor prognosis in two cohorts of patients with ccRCC. High expression of the C4-activating enzyme C1s by tumor cells was associated with poor prognosis in three cohorts. Multivariate Cox analysis revealed that the prognostic value of C1s was independent from complement deposits, suggesting the possibility of complement cascade-unrelated, protumoral functions for C1s. Silencing of C1s in cancer cell lines resulted in decreased proliferation and viability of the cells and in increased activation of T cells in in vitro cocultures. Tumors expressing high levels of C1s showed high infiltration of macrophages and T cells. Modification of the tumor cell phenotype and T-cell activation were independent of extracellular C1s levels, suggesting that C1s was acting in an intracellular, noncanonical manner. In conclusion, our data point to C1s playing a dual role in promoting ccRCC progression by triggering complement activation and by modulating the tumor cell phenotype and tumor microenvironment in a complement cascade-independent, noncanonical manner. Overexpression of C1s by tumor cells could be a new escape mechanism to promote tumor progression.See related Spotlight by Magrini and Garlanda, p. 855. See article by Daugan et al., p. 909 (40).


Subject(s)
Biomarkers, Tumor/metabolism , Complement C1s/metabolism , Complement C4/metabolism , Kidney Neoplasms/genetics , Animals , Case-Control Studies , Humans , Mice , Prognosis , Prospective Studies , Transfection
12.
PLoS One ; 16(5): e0252026, 2021.
Article in English | MEDLINE | ID: mdl-34038475

ABSTRACT

To investigate the mechanisms underlying the SARS-CoV-2 infection severity observed in patients with obesity, we performed a prospective study of 51 patients evaluating the impact of multiple immune parameters during 2 weeks after admission, on vital organs' functions according to body mass index (BMI) categories. High-dimensional flow cytometric characterization of immune cell subsets was performed at admission, 30 systemic cytokines/chemokines levels were sequentially measured, thirteen endothelial markers were determined at admission and at the zenith of the cytokines. Computed tomography scans on admission were quantified for lung damage and hepatic steatosis (n = 23). Abnormal BMI (> 25) observed in 72.6% of patients, was associated with a higher rate of intensive care unit hospitalization (p = 0.044). SARS-CoV-2 RNAaemia, peripheral immune cell subsets and cytokines/chemokines were similar among BMI groups. A significant association between inflammatory cytokines and liver, renal, and endothelial dysfunctions was observed only in patients with obesity (BMI > 30). In contrast, early signs of lung damage (ground-glass opacity) correlated with Th1/M1/inflammatory cytokines only in normal weight patients. Later lesions of pulmonary consolidation correlated with BMI but were independent of cytokine levels. Our study reveals distinct physiopathological mechanisms associated with SARS-CoV-2 infection in patients with obesity that may have important clinical implications.


Subject(s)
COVID-19/pathology , Cytokines/metabolism , Liver/physiopathology , Lung/physiopathology , Obesity/pathology , Aged , Biomarkers/metabolism , Body Mass Index , COVID-19/complications , COVID-19/virology , Chemokines/blood , Chemokines/metabolism , Cytokines/blood , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Female , Hospitalization/statistics & numerical data , Humans , Intensive Care Units , Liver/diagnostic imaging , Lung/diagnostic imaging , Male , Middle Aged , Obesity/complications , Prospective Studies , RNA, Viral/blood , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index
13.
Trends Cancer ; 7(7): 573-576, 2021 07.
Article in English | MEDLINE | ID: mdl-33712391

ABSTRACT

Influenza virus infection leads to severe and complicated disease, particularly in patients with lung cancer. It alters the tumor microenvironment (TME), which may potentiate lung cancer progression and disrupt responses to antitumoral treatments. Consequently, influenza vaccination and antiviral treatments should be recommended to all patients with lung cancer.


Subject(s)
Antiviral Agents/therapeutic use , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/therapy , Lung Neoplasms/mortality , Disease Progression , Humans , Influenza, Human/complications , Influenza, Human/immunology , Influenza, Human/virology , Lung/immunology , Lung/pathology , Lung/virology , Lung Neoplasms/complications , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Medical Oncology/standards , Practice Guidelines as Topic , Tumor Microenvironment/immunology , Vaccination/standards
14.
EMBO Mol Med ; 13(1): e12850, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33372722

ABSTRACT

Decision making in immuno-oncology is pivotal to adapt therapy to the tumor microenvironment (TME) of the patient among the numerous options of monoclonal antibodies or small molecules. Predicting the best combinatorial regimen remains an unmet medical need. Here, we report a multiplex functional and dynamic immuno-assay based on the capacity of the TME to respond to ex vivo stimulation with twelve immunomodulators including immune checkpoint inhibitors (ICI) in 43 human primary tumors. This "in sitro" (in situ/in vitro) assay has the potential to predict unresponsiveness to anti-PD-1 mAbs, and to detect the most appropriate and personalized combinatorial regimen. Prospective clinical trials are awaited to validate this in sitro assay.


Subject(s)
Immunotherapy , Neoplasms , Humans , Medical Oncology , Neoplasms/therapy , Prospective Studies , Tumor Microenvironment
15.
J Immunother Cancer ; 8(2)2020 10.
Article in English | MEDLINE | ID: mdl-33067317

ABSTRACT

BACKGROUND: Natural killer (NK) cells play a crucial role in tumor immunosurveillance through their cytotoxic effector functions and their capacity to interact with other immune cells to build a coordinated antitumor immune response. Emerging data reveal NK cell dysfunction within the tumor microenvironment (TME) through checkpoint inhibitory molecules associated with a regulatory phenotype. OBJECTIVE: We aimed at analyzing the gene expression profile of intratumoral NK cells compared with non-tumorous NK cells, and to characterize their inhibitory function in the TME. METHODS: NK cells were sorted from human lung tumor tissue and compared with non- tumoral distant lungs. RESULTS: In the current study, we identify a unique gene signature of NK cell dysfunction in human non-small cell lung carcinoma (NSCLC). First, transcriptomic analysis reveals significant changes related to migratory pattern with a downregulation of sphingosine-1-phosphate receptor 1 (S1PR1) and CX3C chemokine receptor 1 (CX3CR1) and overexpression of C-X-C chemokine receptor type 5 (CXCR5) and C-X-C chemokine receptor type 6 (CXCR6). Second, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and killer cell lectin like receptor (KLRC1) inhibitory molecules were increased in intratumoral NK cells, and CTLA-4 blockade could partially restore MHC class II level on dendritic cell (DC) that was impaired during the DCs/NK cell cross talk. Finally, NK cell density impacts the positive prognostic value of CD8+ T cells in NSCLC. CONCLUSIONS: These findings demonstrate novel molecular cues associated with NK cell inhibitory functions in NSCLC.


Subject(s)
Biomarkers, Tumor/metabolism , Immunotherapy/methods , Killer Cells, Natural/immunology , Transcriptome/genetics , Humans , Tumor Microenvironment
16.
Semin Immunol ; 48: 101407, 2020 04.
Article in English | MEDLINE | ID: mdl-32900565

ABSTRACT

NK cells orchestrate the tumor destruction and control metastasis in a coordinated way with other immune cells of the tumor microenvironment. However, NK cell infiltration in the tumor microenvironment is limited, and tumor cells have developed numerous mechanisms to escape NK cell attack. As a result, NK cells that have been able to infiltrate the tumors are exhausted, and metabolically and functionally impaired. Depending this impairment the prognostic and theranostic values of NK cells differ depending on the studies, the type of cancer, the stage of tumor and the nature of the tumor microenvironment. Extensive studies have been done to investigate different strategies to improve the NK cell function, and nowadays, a battery of therapeutic tools are being tested, with promising results.


Subject(s)
Killer Cells, Natural/immunology , Neoplasms/immunology , Animals , Humans , Immunologic Surveillance , Neoplasms/diagnosis , Neoplasms/therapy , Prognosis , Tumor Escape , Tumor Microenvironment
17.
Adv Exp Med Biol ; 1263: 145-173, 2020.
Article in English | MEDLINE | ID: mdl-32588327

ABSTRACT

Toll-like receptors (TLRs) in the tumor microenvironment (TME) are expressed not only in innate and adaptive immune cells but also in stromal cells such as fibroblasts, endothelial cells (EC), and tumor cells. The role of TLR signaling in the TME is complex and controversial due to their wide expression within the TME. Moreover, TLR signaling may culminate in different outcomes depending on the type of tumor, the implicated TLR, the type of TLR ligands, and, most importantly, the main type of cell(s) that are targeted by TLR ligands. Understanding to what extent these complex TLR signals impact on tumor progression merits further investigation, as it can help improve existing anti-cancer treatments or unravel new ones. In most cases, TLR signaling in tumor cells and in immune cells is associated with pro-tumoral and anti-tumoral effects, respectively. A better understanding of the relationship between TLRs and the TME, especially in humans, is required to design better anti-cancer therapies, considering that most current TLR-involved treatments were disappointing in clinical trials.In this chapter, we will discuss the impact of TLR signaling on the hallmarks of cancer, by highlighting their effects in tumor, immune, and stromal cells within the TME. Furthermore, we will discuss how the understanding of the role of TLRs can pave the way to develop new anti-cancer treatments and even predict clinical outcome and chemotherapy efficacy.


Subject(s)
Neoplasms/immunology , Neoplasms/metabolism , Toll-Like Receptors/metabolism , Tumor Microenvironment , Humans , Signal Transduction
18.
Methods Enzymol ; 632: 15-25, 2020.
Article in English | MEDLINE | ID: mdl-32000894

ABSTRACT

Immunogenic cell death (ICD), a functionally peculiar type of apoptosis, represents a unique way to deliver danger-associated molecular patterns (DAMPs) to the tumor microenvironment. Once emitted by dying cancer cells, DAMPs orchestrate antigen-specific immune responses by acting on both innate and adaptive components of the immune system. Accumulating preclinical and clinical evidence indicates that one of these DAMPs, calreticulin (CALR) represents a novel powerful prognostic biomarker, reflecting the activation of a clinically relevant anticancer immune response in different cancer malignancies. Therefore, the assessment of CALR emission can provide a therapeutic tool for the stratification of cancer patients and the identification of individuals that are intrinsically capable to respond to a particular treatment. Here we describe methods for the quantification of CALR exposure in the tumor microenvironment of cancer patients by flow cytometry and immunohistochemistry.


Subject(s)
Calreticulin/immunology , Flow Cytometry/methods , Immunogenic Cell Death , Immunohistochemistry/methods , Neoplasms/immunology , Animals , Biomarkers, Tumor/analysis , Biomarkers, Tumor/immunology , Calreticulin/analysis , Humans , Neoplasms/pathology , Tumor Microenvironment
19.
Methods Enzymol ; 631: 277-287, 2020.
Article in English | MEDLINE | ID: mdl-31948552

ABSTRACT

Natural killer (NK) cells constitute the predominant innate lymphocyte subset that mediates the anti-viral and anti-tumor immune responses. NK cells use an array of innate receptors to sense their environment and to respond to infections, cellular stress and transformation. The resulting NK cell activation, including cytotoxicity and cytokine production, is a fundamental component of the early immune response. The most recent discoveries in NK cell biology have stimulated the translational research that has led to remarkable results for the treatment of human malignancies. Therefore, the rapid isolation of NK cells from the peripheral blood or tumor microenvironment and the subsequent assessment of cytolytic function are crucial to the study of their potency and NK cell-mediated immunosurveillance. Here, we provide protocols for NK cell isolation and the assessment of NK cell cytotoxicity using flow cytometry.


Subject(s)
Cytotoxicity Tests, Immunologic/methods , Cytotoxicity, Immunologic , Flow Cytometry/methods , Killer Cells, Natural/immunology , Cell Separation/methods , Humans , Lymphocyte Activation
20.
J Immunother Cancer ; 7(1): 312, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31747968

ABSTRACT

BACKGROUND: Adjuvanticity, which is the ability of neoplastic cells to deliver danger signals, is critical for the host immune system to mount spontaneous and therapy-driven anticancer immune responses. One of such signals, i.e., the exposure of calreticulin (CALR) on the membrane of malignant cells experiencing endoplasmic reticulum (ER) stress, is well known for its role in the activation of immune responses to dying cancer cells. However, the potential impact of CALR on the immune contexture of primary and metastatic high-grade serous carcinomas (HGSCs) and its prognostic value for patients with HGSC remains unclear. METHOD: We harnessed a retrospective cohort of primary (no = 152) and metastatic (no = 74) tumor samples from HGSC patients to investigate the CALR expression in relation with prognosis and function orientation of the tumor microenvironment. IHC data were complemented with transcriptomic and functional studies on second prospective cohort of freshly resected HGSC samples. In silico analysis of publicly available RNA expression data from 302 HGSC samples was used as a confirmatory approach. RESULTS: We demonstrate that CALR exposure on the surface of primary and metastatic HGSC cells is driven by a chemotherapy-independent ER stress response and culminates with the establishment of a local immune contexture characterized by TH1 polarization and cytotoxic activity that enables superior clinical benefits. CONCLUSIONS: Our data indicate that CALR levels in primary and metastatic HGSC samples have robust prognostic value linked to the activation of clinically-relevant innate and adaptive anticancer immune responses.


Subject(s)
Calreticulin/immunology , Ovarian Neoplasms/immunology , Adult , Aged , Aged, 80 and over , Endoplasmic Reticulum Stress , Female , Humans , Middle Aged , Ovarian Neoplasms/genetics , Prognosis , RNA-Seq , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...