Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 152(9): 091103, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-33480725

ABSTRACT

We present the first crossed beam scattering experiment using a Zeeman decelerated molecular beam. The narrow velocity spreads of Zeeman decelerated NO (X2Π3/2, j = 3/2) radicals result in high-resolution scattering images, thereby fully resolving quantum diffraction oscillations in the angular scattering distribution for inelastic NO-Ne collisions and product-pair correlations in the radial scattering distribution for inelastic NO-O2 collisions. These measurements demonstrate similar resolution and sensitivity as in experiments using Stark decelerators, opening up possibilities for controlled and low-energy scattering experiments using chemically relevant species such as H and O atoms, O2 molecules, or NH radicals.

2.
Rev Sci Instrum ; 90(1): 013104, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30709220

ABSTRACT

Zeeman deceleration is a relatively new technique used to obtain full control over the velocity of paramagnetic atoms or molecules in a molecular beam. We present a detailed description of a multistage Zeeman decelerator that has recently become operational in our laboratory [Cremers et al., Phys. Rev. A 98, 033406 (2018)] and that is specifically optimized for crossed molecular beams scattering experiments. The decelerator consists of an alternating array of 100 solenoids and 100 permanent hexapoles to guide or decelerate beams of paramagnetic atoms or molecules. The Zeeman decelerator features a modular design that is mechanically easy to extend to arbitrary length and allows for solenoid and hexapole elements that are convenient to replace. The solenoids and associated electronics are efficiently water cooled and allow the Zeeman decelerator to operate at repetition rates exceeding 10 Hz. We characterize the performance of the decelerator using various beams of metastable rare gas atoms. Imaging of the atoms that exit the Zeeman decelerator reveals the transverse focusing properties of the hexapole array in the Zeeman decelerator.

SELECTION OF CITATIONS
SEARCH DETAIL
...