Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 287(28): 23932-47, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22610098

ABSTRACT

To promote glucose uptake into fat and muscle cells, insulin causes the translocation of GLUT4 glucose transporters from intracellular vesicles to the cell surface. Previous data support a model in which TUG traps GLUT4-containing vesicles and tethers them intracellularly in unstimulated cells and in which insulin mobilizes this pool of vesicles by releasing this tether. Here we show that TUG undergoes site-specific endoproteolytic cleavage, which separates a GLUT4-binding, N-terminal region of TUG from a C-terminal region previously suggested to bind an intracellular anchor. Cleavage is accelerated by insulin stimulation in 3T3-L1 adipocytes and is highly dependent upon adipocyte differentiation. The N-terminal TUG cleavage product has properties of a novel 18-kDa ubiquitin-like modifier, which we call TUGUL. The C-terminal product is observed at the expected size of 42 kDa and also as a 54-kDa form that is released from membranes into the cytosol. In transfected cells, intact TUG links GLUT4 to PIST and also binds Golgin-160 through its C-terminal region. PIST is an effector of TC10α, a GTPase previously shown to transmit an insulin signal required for GLUT4 translocation, and we show using RNAi that TC10α is required for TUG proteolytic processing. Finally, we demonstrate that a cleavage-resistant form of TUG does not support highly insulin-responsive GLUT4 translocation or glucose uptake in 3T3-L1 adipocytes. Together with previous results, these data support a model whereby insulin stimulates TUG cleavage to liberate GLUT4 storage vesicles from the Golgi matrix, which promotes GLUT4 translocation to the cell surface and enhances glucose uptake.


Subject(s)
Adipocytes/metabolism , Carrier Proteins/metabolism , Glucose Transporter Type 4/metabolism , Glucose/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Amino Acid Sequence , Animals , Carrier Proteins/genetics , Glucose/pharmacokinetics , Glucose Transporter Type 4/genetics , Golgi Apparatus/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Immunoblotting , Insulin/pharmacology , Intracellular Signaling Peptides and Proteins , Mice , Microscopy, Fluorescence , Molecular Sequence Data , Mutation , Protein Transport/drug effects , Proteolysis/drug effects , RNA Interference , Sequence Homology, Amino Acid
2.
Diabetes ; 59(6): 1521-7, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20299468

ABSTRACT

OBJECTIVE: Insulin released by the beta-cell is thought to act locally to regulate glucagon secretion. The possibility that insulin might also act centrally to modulate islet glucagon secretion has received little attention. RESEARCH DESIGN AND METHODS: Initially the counterregulatory response to identical hypoglycemia was compared during intravenous insulin and phloridzin infusion in awake chronically catheterized nondiabetic rats. To explore whether the disparate glucagon responses seen were in part due to changes in ventromedial hypothalamus (VMH) exposure to insulin, bilateral guide cannulas were inserted to the level of the VMH and 8 days later rats received a VMH microinjection of either 1) anti-insulin affibody, 2) control affibody, 3) artificial extracellular fluid, 4) insulin (50 microU), 5) insulin receptor antagonist (S961), or 6) anti-insulin affibody plus a gamma-aminobutyric acid A (GABA(A)) receptor agonist muscimol, prior to a hypoglycemic clamp or under baseline conditions. RESULTS: As expected, insulin-induced hypoglycemia produced a threefold increase in plasma glucagon. However, the glucagon response was fourfold to fivefold greater when circulating insulin did not increase, despite equivalent hypoglycemia and C-peptide suppression. In contrast, epinephrine responses were not altered. The phloridzin-hypoglycemia induced glucagon increase was attenuated (40%) by VMH insulin microinjection. Conversely, local VMH blockade of insulin amplified glucagon twofold to threefold during insulin-induced hypoglycemia. Furthermore, local blockade of basal insulin levels or insulin receptors within the VMH caused an immediate twofold increase in fasting glucagon levels that was prevented by coinjection to the VMH of a GABA(A) receptor agonist. CONCLUSIONS: Together, these data suggest that insulin's inhibitory effect on alpha-cell glucagon release is in part mediated at the level of the VMH under both normoglycemic and hypoglycemic conditions.


Subject(s)
Glucagon/metabolism , Insulin/pharmacology , Pancreas/metabolism , Ventromedial Hypothalamic Nucleus/physiology , 3T3 Cells , Animals , Glucagon/blood , Hypoglycemia/chemically induced , Hypoglycemia/prevention & control , Insulin/physiology , Insulin-Secreting Cells/metabolism , Male , Mice , Phlorhizin/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Ventromedial Hypothalamic Nucleus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL