Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Virol ; 169(3): 68, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453712

ABSTRACT

The complete genome sequence of a novel sadwavirus infecting cattleya orchids in South East Queensland is described. Isometric virions of c. 27 nm diameter were observed in sap extracts viewed under a transmission electron microscope, and the genome sequence of this virus was determined by high-throughput sequencing. The viral genome consists of two RNA components, 5,910 and 4,435 nucleotides (nt) in length, each encoding a long polyprotein, with predicted cleavage sites at H/Y, E/G, Q/S, and Q/G for the RNA1 and T/G for the RNA2 translation products, respectively. RNA2 has an additional small ORF of 684 nt near the 3' untranslated region. Phylogenetic analysis based on an amino acid sequence alignment of the Pro-Pol region suggested that this virus is most closely related to pineapple secovirus A, a member of the subgenus Cholivirus, but warrants classification as a member of a new species because it exhibited no more than 64% amino acid identity in pairwise sequence comparisons. Because of the prominent purple ringspots that were observed on the leaves of some of the plants, we propose the name "cattleya purple ringspot virus" for this virus (suggested species name: "Sadwavirus cattleyacola").


Subject(s)
RNA, Viral , Secoviridae , RNA, Viral/genetics , Phylogeny , Amino Acid Sequence , Secoviridae/genetics , Virion , Genome, Viral
2.
Arch Virol ; 167(5): 1317-1323, 2022 May.
Article in English | MEDLINE | ID: mdl-35394246

ABSTRACT

Bermuda grass latent virus (BGLV; genus Panicovirus) is identified for the first time in Australia and in only the second country after the USA. A full-length genome sequence was obtained, which has 97% nucleotide sequence identity to that of the species exemplar isolate. Surveys for BGLV, utilising a newly designed universal panicovirus RT-PCR assay for diagnosis, demonstrated widespread infection by this virus in a broad variety of Bermuda grass cultivars (Cynodon dactylon and C. dactylon × C. transvaalensis) grown in both New South Wales and Queensland. The virus was also detected in Rhodes grass (Chloris gayana) and Kikuyu grass (Cenchrus clandestinus), which are both important pasture grasses in subtropical Australia, and the latter is also grown as turf. Furthermore, the Rhodes grass plant, which had strong mosaic symptoms, was also infected with sugarcane mosaic virus, warranting further investigations as to whether synergistic interactions occur between these two viruses.


Subject(s)
Cynodon , Tombusviridae , Australia , Queensland
3.
Virus Res ; 305: 198554, 2021 11.
Article in English | MEDLINE | ID: mdl-34487768

ABSTRACT

The genome sequence of a new subgroup C nepovirus from Stenotaphrum secundatum in Australia is described. This virus, tentatively named Stenotaphrum nepovirus (SteNV), was present in separate plants as a mixed infection with either sugarcane mosaic virus or Panicum mosaic virus. The virus genome was divided between two RNA segments, 7,824 and 7,104 nucleotides (nt) in length, which each encode a single long polyprotein with putative 3C-like cysteine protease sites of the type H/G, H/S or L/S. The 3' untranslated region of RNA2, at 2,155 nt, is the longest observed for any subgroup C nepovirus. Phylogenetic analyses using protease-polymerase and coat protein amino acid alignments suggest that SteNV is most closely related to cherry leaf roll virus. Using a newly developed RT-PCR assay, this virus was detected at multiple localities in New South Wales, Queensland and Western Australia, and in a second host species, Digitaria didactyla. No consistent association between virus infection and symptoms could be established. The economic importance, pathogenicity and transmission of this novel virus species warrant further investigation.


Subject(s)
Nepovirus , 3' Untranslated Regions , Genome, Viral , Nepovirus/genetics , Phylogeny , Poaceae , Polyproteins/genetics , RNA, Viral/analysis , RNA, Viral/genetics
4.
J Gen Virol ; 101(12): 1305-1312, 2020 12.
Article in English | MEDLINE | ID: mdl-33001023

ABSTRACT

The badnavirus replication cycle is poorly understood and most knowledge is based on extrapolations from model viruses such as Cauliflower mosaic virus (CaMV). However, in contrast to CaMV, badnaviruses are thought not to produce viroplasms and therefore it has been a mystery as to where virion assembly occurs. In this study, ultrathin sections of a banana leaf infected with a badnavirus, banana streak MY virus (BSMYV), were examined by transmission electron microscopy. Electron-dense inclusion bodies (EDIBs) were sporadically distributed in parenchymatous tissues of the leaf, most commonly in the palisade and spongy mesophyll cells. These EDIBs had a characteristic structure, comprising an electron-dense core, a single, encircling lacuna and an outer ring of electron-dense material. However, much less frequently, EDIBs with two or three lacunae were observed. In the outer ring, densely packed virions were visible with a shape and size consistent with that expected for badnaviruses. Immunogold labelling was done with primary antibodies that detected the N-terminus of the capsid protein and strong labelling of the outer ring but not the central core or lacuna was observed. It is concluded that the EDIBs that were observed are equivalent in function to the viroplasms of CaMV, although obviously different in composition as there is not a paralogue of the transactivation/viroplasm protein in the badnavirus genome. It is postulated that production of a viroplasm could be a conserved characteristic of all members of the Caulimoviridae.


Subject(s)
Badnavirus/physiology , Badnavirus/ultrastructure , Musa/virology , Plant Diseases/virology , Viral Replication Compartments/ultrastructure , Capsid Proteins/analysis , Immunohistochemistry , Inclusion Bodies, Viral/ultrastructure , Microscopy, Electron, Transmission , Musa/ultrastructure
5.
Front Microbiol ; 11: 450, 2020.
Article in English | MEDLINE | ID: mdl-32273870

ABSTRACT

The rumen contains a multi-kingdom, commensal microbiome, including protozoa, bacteria, archaea, fungi and viruses, which enables ruminant herbivores to ferment and utilize plant feedstuffs that would be otherwise indigestible. Within the rumen, virus populations are diverse and highly abundant, often out-numbering the microbial populations that they both predate on and co-exist with. To date the research effort devoted to understanding rumen-associated viral populations has been considerably less than that given to the other microbial populations, yet their contribution to maintaining microbial population balance, intra-ruminal microbial lysis, fiber breakdown, nutrient cycling and genetic transfer may be highly significant. This review follows the technological advances which have contributed to our current understanding of rumen viruses and drawing on knowledge from other environmental and animal-associated microbiomes, describes the known and potential roles and impacts viruses have on rumen function and speculates on the future directions of rumen viral research.

6.
Virus Evol ; 1(1): vev009, 2015.
Article in English | MEDLINE | ID: mdl-27774281

ABSTRACT

Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) is a multi-component single-stranded DNA virus, which infects banana plants in many regions of the world, often resulting in large-scale crop losses. We analyzed 171 banana leaf samples from fourteen countries and recovered, cloned, and sequenced 855 complete BBTV components including ninety-four full genomes. Importantly, full genomes were determined from eight countries, where previously no full genomes were available (Samoa, Burundi, Republic of Congo, Democratic Republic of Congo, Egypt, Indonesia, the Philippines, and the USA [HI]). Accounting for recombination and genome component reassortment, we examined the geographic structuring of global BBTV populations to reveal that BBTV likely originated in Southeast Asia, that the current global hotspots of BBTV diversity are Southeast Asia/Far East and India, and that BBTV populations circulating elsewhere in the world have all potentially originated from infrequent introductions. Most importantly, we find that rather than the current global BBTV distribution being due to increases in human-mediated movements of bananas over the past few decades, it is more consistent with a pattern of infrequent introductions of the virus to different parts of the world over the past 1,000 years.

SELECTION OF CITATIONS
SEARCH DETAIL