Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 221(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38953896

ABSTRACT

Gain-of-function mutations in STING cause STING-associated vasculopathy with onset in infancy (SAVI) characterized by early-onset systemic inflammation, skin vasculopathy, and interstitial lung disease. Here, we report and characterize a novel STING variant (F269S) identified in a SAVI patient. Single-cell transcriptomics of patient bone marrow revealed spontaneous activation of interferon (IFN) and inflammatory pathways across cell types and a striking prevalence of circulating naïve T cells was observed. Inducible STING F269S expression conferred enhanced signaling through ligand-independent translocation of the protein to the Golgi, protecting cells from viral infections but preventing their efficient immune priming. Additionally, endothelial cell activation was promoted and further exacerbated by cytokine secretion by SAVI immune cells, resulting in inflammation and endothelial damage. Our findings identify STING F269S mutation as a novel pathogenic variant causing SAVI, highlight the importance of the crosstalk between endothelial and immune cells in the context of lung disease, and contribute to a better understanding of how aberrant STING activation can cause pathology.


Subject(s)
Endothelial Cells , Membrane Proteins , Membrane Proteins/genetics , Membrane Proteins/metabolism , Humans , Endothelial Cells/metabolism , Endothelial Cells/pathology , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/immunology , Signal Transduction , Vascular Diseases/genetics , Vascular Diseases/pathology , Golgi Apparatus/metabolism , Interferons/metabolism , Interferons/genetics , Male , Gain of Function Mutation , Mutation , Infant
2.
EMBO J ; 42(10): e112234, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36970857

ABSTRACT

The interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop. These residues recruit Phosphatidylinositol 3,4,5-trisphosphate (PIP3) that we show here to be required for endosomal IFITM activity. We identify PIP3 as an interferon-inducible phospholipid that acts as a rheostat for endosomal antiviral immunity. PIP3 levels correlated with the potency of endosomal IFITM restriction and exogenous PIP3 enhanced inhibition of endocytic viruses, including the recent SARS-CoV2 Omicron variant. Together, our results identify PIP3 as a critical regulator of endosomal IFITM restriction linking it to the Pi3K/Akt/mTORC pathway and elucidate cell-compartment-specific antiviral mechanisms with potential relevance for the development of broadly acting antiviral strategies.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Interferons/metabolism , Phospholipids , Phosphatidylinositol 3-Kinases/metabolism , RNA, Viral , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism , Virus Internalization , Membrane Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...