Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 23(1): 24-34, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37723046

ABSTRACT

Therapeutic resistance remains a major obstacle to successful clinical management of diffuse intrinsic pontine glioma (DIPG), a high-grade pediatric tumor of the brain stem. In nearly all patients, available therapies fail to prevent progression. Innovative combinatorial therapies that penetrate the blood-brain barrier and lead to long-term control of tumor growth are desperately needed. We identified mechanisms of resistance to radiotherapy, the standard of care for DIPG. On the basis of these findings, we rationally designed a brain-penetrant small molecule, MTX-241F, that is a highly selective inhibitor of EGFR and PI3 kinase family members, including the DNA repair protein DNA-PK. Preliminary studies demonstrated that micromolar levels of this inhibitor can be achieved in murine brain tissue and that MTX-241F exhibits promising single-agent efficacy and radiosensitizing activity in patient-derived DIPG neurospheres. Its physiochemical properties include high exposure in the brain, indicating excellent brain penetrance. Because radiotherapy results in double-strand breaks that are repaired by homologous recombination (HR) and non-homologous DNA end joining (NHEJ), we have tested the combination of MTX-241F with an inhibitor of Ataxia Telangiectasia Mutated to achieve blockade of HR and NHEJ, respectively, with or without radiotherapy. When HR blockers were combined with MTX-241F and radiotherapy, synthetic lethality was observed, providing impetus to explore this combination in clinically relevant models of DIPG. Our data provide proof-of-concept evidence to support advanced development of MTX-241F for the treatment of DIPG. Future studies will be designed to inform rapid clinical translation to ultimately impact patients diagnosed with this devastating disease.


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Humans , Child , Mice , Animals , Diffuse Intrinsic Pontine Glioma/drug therapy , Diffuse Intrinsic Pontine Glioma/genetics , Diffuse Intrinsic Pontine Glioma/metabolism , Neoplasm Recurrence, Local , DNA Repair , Signal Transduction , DNA/therapeutic use , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/pathology
2.
Neoplasia ; 44: 100931, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37647805

ABSTRACT

Therapeutic resistance remains a major obstacle to preventing progression of H3K27M-altered Diffuse Midline Glioma (DMG). Resistance is driven in part by ALDH-positive cancer stem cells (CSC), with high ALDH1A3 expression observed in H3K27M-mutant DMG biopsies. We hypothesized that ALDH-mediated stemness and resistance may in part be driven by the oncohistone itself. Upon deletion of H3K27M, ALDH1A3 expression decreased dramatically and was accompanied by a gain in astrocytic marker expression and a loss of neurosphere forming potential, indicative of differentiation. Here we show that the oncohistone regulates histone acetylation through ALDH1A3 in a Wnt-dependent manner and that loss of H3K27M expression results in sensitization of DMGs to radiotherapy. The observed elevated Wnt signaling in H3K27M-altered DMG likely stems from a dramatic suppression of mRNA and protein expression of the Wnt inhibitor EYA4 driven by the oncohistone. Thus, our findings identify EYA4 as a bona fide tumor suppressor in DMG that upon suppression, results in aberrant Wnt signaling to orchestrate stemness and differentiation. Future studies will explore whether overexpression of EYA4 in DMG can impede growth and invasion. In summary, we have gained mechanistic insight into H3K27M-mediated regulation of cancer stemness and differentiation, which provides rationale for exploring new therapeutic targets for DMG.

3.
Mitochondrial DNA B Resour ; 5(3): 2067-2069, 2020 May 13.
Article in English | MEDLINE | ID: mdl-33457745

ABSTRACT

Caulacanthus okamurae is an invasive red alga that forms extensive mats in sheltered marine habitats around the world. To determine its genomic structure and genetic relationship to native and other non-native populations of C. okamurae, high-throughput sequencing analysis was performed on an introduced specimen from Bennett Slough, Moss Landing, California, USA. Assembly of 23,146,595 filtered 150 bp paired-end Illumina sequencing reads yielded its complete mitogenome (GenBank accession MT193839) and plastid genome (GenBank accession MT193838). The mitogenome is 25,995 bp in length and contains 50 genes. The plastid genome is 173,516 bp and contains 234 genes. Comparison of the organellar chromosomes to other Gigartinales revealed a high-level of gene synteny. BLAST analysis of marker sequences (rbcL, cox1, cox2) of C. okamurae from Moss Landing identified four identical DNA sequences: one from a specimen from a native population of C. okamurae from South Korea and three from specimens representing invasive populations from France, Spain, and the USA. These genetic results confirm the presence of C. okamurae in central California, USA, and represent the first complete mitogenome and plastid genome from the Caulacanthaceae.

SELECTION OF CITATIONS
SEARCH DETAIL
...