Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phycol ; 60(2): 483-502, 2024 04.
Article in English | MEDLINE | ID: mdl-38264946

ABSTRACT

Kelp communities are experiencing exacerbated heat-related impacts from more intense, frequent, and deeper marine heatwaves (MHWs), imperiling the long-term survival of kelp forests in the climate change scenario. The occurrence of deep thermal anomalies is of critical importance, as elevated temperatures can impact kelp populations across their entire bathymetric range. This study evaluates the impact of MHWs on mature sporophytes of Pterygophora californica (walking kelp) from the bathymetric extremes (8-10 vs. 25-27 m) of a population situated in Baja California (Mexico). The location is near the southernmost point of the species's broad distribution (from Alaska to Mexico). The study investigated the ecophysiological responses (e.g., photobiology, nitrate uptake, oxidative stress) and growth of adult sporophytes through a two-phase experiment: warming simulating a MHW and a post-MHW phase without warming. Generally, the effects of warming differed depending on the bathymetric origin of the sporophytes. The MHW facilitated essential metabolic functions of deep-water sporophytes, including photosynthesis, and promoted their growth. In contrast, shallow-water sporophytes displayed metabolic stress, reduced growth, and oxidative damage. Upon the cessation of warming, certain responses, such as a decline in nitrate uptake and net productivity, became evident in shallow-water sporophytes, implying a delay in heat-stress response. This indicates that variation in temperatures can result in more prominent effects than warming alone. The greater heat tolerance of sporophytes in deeper waters shows convincing evidence that deep portions of P. californica populations have the potential to serve as refuges from the harmful impacts of MHWs on shallow reefs.


Subject(s)
Kelp , Nitrates , Mexico , Hot Temperature , Water , Ecosystem
2.
J Pers Med ; 13(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37763087

ABSTRACT

Polycystic ovary syndrome (PCOS) is often accompanied with metabolic disturbances attributed to androgen excess and obesity, but the contribution of each has not been defined, and the occurrence of metabolic disturbances is usually not investigated. Ninety-nine women with PCOS and forty-one without PCOS were evaluated. The clinical biomarkers of alterations related to glucose (glucose, insulin, and clamp-derived glucose disposal - M), liver (aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase), and endothelium (arginine, asymmetric dymethylarginine, carotid intima-media thickness, and flow-mediated dilation) metabolism were measured; participants were categorized into four groups according to their obesity (OB) and hyperandrogenemia (HA) status as follows: Healthy (no-HA, lean), HA (HA, lean), OB (no-HA, OB), and HAOB (HA, OB). Metabolic disturbances were very frequent in women with PCOS (≈70%). BMI correlated with all biomarkers, whereas free testosterone (FT) correlated with only glucose- and liver-related indicators. Although insulin sensitivity and liver enzymes were associated with FT, women with obesity showed lower M (coef = 8.56 - 0.080(FT) - 3.71(Ob); p < 0.001) and higher aspartate aminotransferase (coef = 26.27 + 0.532 (FT) + 8.08 (Ob); p = 0.015) than lean women with the same level of FT. Women with obesity showed a higher risk of metabolic disorders than lean women, independent of hyperandrogenemia. Clinicians are compelled to look for metabolic alterations in women with PCOS. Obesity should be treated in all cases, but hyperandrogenemia should also be monitored in those with glucose-or liver-related disturbances.

3.
Biometals ; 36(2): 371-383, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36930341

ABSTRACT

Iron is a vital although biologically inaccessible trace nutrient for nearly all forms of life but "free" iron can be deleterious to cells and thus iron uptake and storage must be carefully controlled. The marine environment is particularly iron poor making mechanisms for its uptake and storage even more imperative. In this brief review we explore the known and potential iron uptake and storage pathways for the biologically and economically important marine brown macroalgae (seaweeds/kelps).


Subject(s)
Phaeophyceae , Trace Elements , Iron/metabolism , Phaeophyceae/metabolism , Biological Transport , Trace Elements/metabolism
4.
J Phycol ; 59(3): 552-569, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36973579

ABSTRACT

The spread of non-indigenous and invasive seaweeds has increased worldwide, and their potential effects on native seaweeds have raised concern. Undaria pinnatifida is considered among the most prolific non-indigenous species. This species has expanded rapidly in the Northeast Pacific, overlapping with native communities such as the iconic giant kelp forests (Macrocystis pyrifera). Canopy shading by giant kelp has been argued to be a limiting factor for the presence of U. pinnatifida in the understory, thus its invasiveness capacity. However, its physiological plasticity under light limitation remains unclear. In this work, we compared the physiology and growth of juvenile U. pinnatifida and M. pyrifera sporophytes transplanted to the understory of a giant kelp forest, to juveniles growing outside of the forest. Extreme low light availability compared to that outside (~0.2 and ~4.4 mol photon ⋅ m-2 ⋅ d-1 , respectively) likely caused a "metabolic energy crisis" in U. pinnatifida, thus restricting its photoacclimation plasticity and nitrogen acquisition, ultimately reducing its growth. Despite M. pyrifera juveniles showing photoacclimatory responses (e.g., increases in photosynthetic efficiency and lower compensation irradiance, Ec ), their physiological/vegetative status deteriorated similarly to U. pinnatifida, which explains the low recruitment inside the forest. Generally, our results revealed the ecophysiological basis behind the limited growth and survival of juvenile U. pinnatifida sporophytes in the understory.


Subject(s)
Introduced Species , Kelp , Macrocystis , Undaria , Forests , Macrocystis/physiology , Photosynthesis
5.
Microorganisms ; 9(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466273

ABSTRACT

Bacteria from the genus Marinobacter are ubiquitous throughout the worlds' oceans as "opportunitrophs" capable of surviving a wide range of conditions, including colonization of surfaces of marine snow and algae. To prevent too many bacteria from occupying this ecological niche simultaneously, some sort of population dependent control must be operative. Here, we show that while Marinobacter do not produce or utilize an acylhomoserine lactone (AHL)-based quorum sensing system, "sibling" colonies of many species of Marinobacter exhibit a form of non-lethal chemical communication that prevents colonies from overrunning each other's niche space. Evidence suggests that this inhibition is the result of a loss in motility for cells at the colony interfaces. Although not the signal itself, we have identified a protein, glycerophosphoryl diester phosphodiesterase, that is enriched in the inhibition zone between the spreading colonies that may be part of the overall response.

6.
Biometals ; 32(1): 139-154, 2019 02.
Article in English | MEDLINE | ID: mdl-30623317

ABSTRACT

Phytoplankton blooms can cause acute effects on marine ecosystems due either to their production of endogenous toxins or to their enormous biomass leading to major impacts on local economies and public health. Despite years of effort, the causes of these Harmful Algal Blooms are still not fully understood. Our hypothesis is that bacteria that produce photoactive siderophores may provide a bioavailable source of iron for phytoplankton which could in turn stimulate algal growth and support bloom dynamics. Here we correlate iron concentrations, phytoplankton cell counts, bacterial cell abundance, and copy numbers for a photoactive siderophore vibrioferrin biosynthesis gene in water samples taken from 2017 cruises in the Gulf of California, and the Pacific Ocean off the coast of northern Baja California as well as during a multiyear sampling at Scripps Pier in San Diego, CA. We find that bacteria producing the photoactive siderophore vibrioferrin, make up a surprisingly high percentage of total bacteria in Pacific/Gulf of California coastal waters (up to 9%). Vibroferrin's unique properties and the widespread prevalence of its bacterial producers suggest that it may contribute significantly to generating bioavailability of iron via photoredox reactions.


Subject(s)
Citrates/biosynthesis , Iron/metabolism , Marinobacter/chemistry , Siderophores/biosynthesis , California , Citrates/chemistry , Iron/chemistry , Marinobacter/metabolism , Mexico , Pyrrolidinones/chemistry , Siderophores/chemistry
7.
Biometals ; 30(6): 945-953, 2017 12.
Article in English | MEDLINE | ID: mdl-29067573

ABSTRACT

The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies being distinguished: Strategy I involves the induction of an Fe(III)-chelate reductase (ferrireductase) along with Fe(II) or Fe(III) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine, plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the harmful algal bloom dinoflagellate Lingulodinium polyedrum. L. polyedrum is an armored dinoflagellate with a mixotrophic lifestyle and one of the most common bloom species on Southern California coast widely noted for its bioluminescent properties and as a producer of yessotoxins. Short term radio-iron uptake studies indicate that iron is taken up by L. polyedrum in a time dependent manner consistent with an active transport process. Based on inhibitor and other studies it appears that a reductive-oxidative pathway such as that found in yeast and the green alga Chlamydomonas reinhardtii is likely. Of the various iron sources tested vibrioferrin, a photoactive and relatively weak siderophore produced by potentially mutualistic Marinobacter bacterial species, was the most efficient. Other more stable and non-photoactive siderophores such as ferrioxamine E were ineffective. Several pieces of data including long term exposure to 57Fe using Mössbauer spectroscopy suggest that L. polyedrum does not possess an iron storage system but rather presumably relies on an efficient iron uptake system, perhaps mediated by mutualistic interactions with bacteria.


Subject(s)
Dinoflagellida/metabolism , Iron/metabolism , Citrates/metabolism , Dinoflagellida/growth & development , Eutrophication , Iron/pharmacokinetics , Oxidation-Reduction , Pyrrolidinones/metabolism , Siderophores/metabolism , Spectroscopy, Mossbauer
8.
Front Microbiol ; 7: 560, 2016.
Article in English | MEDLINE | ID: mdl-27199906

ABSTRACT

In this study we established the B1 and B12 vitamin requirement of the dinoflagellate Lingulodinium polyedrum and the vitamin supply by its associated bacterial community. In previous field studies the B1 and B12 demand of this species was suggested but not experimentally verified. When the axenic vitamin un-supplemented culture (B-ns) of L. polyedrum was inoculated with a coastal bacterial community, the dinoflagellate's vitamin growth limitation was overcome, reaching the same growth rates as the culture growing in vitamin B1B7B12-supplemented (B-s) medium. Measured B12 concentrations in the B-s and B-ns cultures were both higher than typical coastal concentrations and B12 in the B-s culture was higher than in the B-ns culture. In both B-s and B-ns cultures, the probability of dinoflagellate cells having bacteria attached to the cell surface was similar and in both cultures an average of six bacteria were attached to each dinoflagellate cell. In the B-ns culture the free bacterial community showed significantly higher cell abundance suggesting that unattached bacteria supplied the vitamins. The fluorescence in situ hybridization (FISH) protocol allowed the quantification and identification of three bacterial groups in the same samples of the free and attached epibiotic bacteria for both treatments. The relative composition of these groups was not significantly different and was dominated by Alphaproteobacteria (>89%). To complement the FISH counts, 16S rDNA sequencing targeting the V3-V4 regions was performed using Illumina-MiSeq technology. For both vitamin amendments, the dominant group found was Alphaproteobacteria similar to FISH, but the percentage of Alphaproteobacteria varied between 50 and 95%. Alphaproteobacteria were mainly represented by Marivita sp., a member of the Roseobacter clade, followed by the Gammaproteobacterium Marinobacter flavimaris. Our results show that L. polyedrum is a B1 and B12 auxotroph, and acquire both vitamins from the associated bacterial community in sufficient quantity to sustain the maximum growth rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...