Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Regul Toxicol Pharmacol ; 96: 153-166, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29777725

ABSTRACT

Both CD-1 and C57BL/6 wildtype (C57BL/6-WT) mice show equivalent short-term lung toxicity from exposures to styrene, while long-term tumor responses are greater in CD-1 mice. We analyzed lung gene expression from styrene exposures lasting from 1-day to 2-years in male mice from these two strains, including a Cyp2f2(-/-) knockout (C57BL/6-KO) and a Cyp2F1/2A13/2B6 transgenic mouse (C57BL/6-TG). With short term exposures (1-day to 1-week), CD-1 and C57BL/6-WT mice had thousands of differentially expressed genes (DEGs), consistent with changes in pathways for cell proliferation, cellular lipid metabolism, DNA-replication and inflammation. C57BL/6-WT mice responded within a single day; CD-1 mice required several days of exposure. The numbers of exposure related DEGs were greatly reduced at longer times (4-weeks to 2-years) with enrichment only for biological oxidations in C57BL/6-WT and metabolism of lipids and lipoproteins in CD-1. Gene expression results indicate a non-genotoxic, mouse specific mode of action for short-term styrene responses related to activation of nuclear receptor signaling and cell proliferation. Greater tumor susceptibility in CD-1 mice correlated with the presence of the Pas1 loci, differential Cytochrome P450 gene expression, down-regulation of Nr4a, and greater inflammatory pathway activation. Very few exposure-related responses occurred at any time in C57BL/6-KO or -TG mice indicating that neither the short term nor long term responses of styrene in mice are relevant endpoints for assessing human risks.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Gene Expression Profiling , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Styrene/toxicity , Animals , Cell Proliferation/drug effects , Cytochrome P-450 Enzyme System/deficiency , Cytochrome P-450 Enzyme System/metabolism , Humans , Inhalation Exposure , Lipid Metabolism/drug effects , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Risk Assessment , Styrene/administration & dosage , Time Factors
2.
Regul Toxicol Pharmacol ; 95: 17-28, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29496518

ABSTRACT

Based on 13 chronic studies, styrene exposure causes lung tumors in mice, but no tumor increases in other organs in mice or rats. Extensive research into the mode of action demonstrates the key events and human relevance. Key events are: metabolism of styrene by CYP2F2 in mouse lung club cells to ring-oxidized metabolites; changes in gene expression for metabolism of lipids and lipoproteins, cell cycle and mitotic M-M/G1 phases; cytotoxicity and mitogenesis in club cells; and progression to preneoplastic/neoplastic lesions in lung. Although styrene-7,8-oxide (SO) is a common genotoxic styrene metabolite in in vitro studies, the data clearly demonstrate that SO is not the proximate toxicant and that styrene does not induce a genotoxic mode of action. Based on complete attenuation of styrene short-term and chronic toxicity in CYP2F2 knockout mice and similar attenuation in CYP2F1 (humanized) transgenic mice, limited metabolism of styrene in human lung by CYP2F1, 2 + orders of magnitude lower SO levels in human lung compared to mouse lung, and lack of styrene-related increase in lung cancer in humans, styrene does not present a risk of cancer to humans.


Subject(s)
Carcinogens/toxicity , Lung Neoplasms/chemically induced , Styrene/toxicity , Animals , Carcinogens/pharmacokinetics , Cell Survival/drug effects , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression/drug effects , Humans , Lipid Metabolism/genetics , Lung/drug effects , Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice, Knockout , Rats , Risk Assessment , Species Specificity , Styrene/pharmacokinetics
3.
Toxicol Sci ; 159(2): 413-421, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28962520

ABSTRACT

Styrene is a mouse-specific lung carcinogen, and short-term mode of action studies have demonstrated that cytotoxicity and/or cell proliferation, and genomic changes are dependent on CYP2F2 metabolism. The current study examined histopathology, cell proliferation, and genomic changes in CD-1, C57BL/6 (WT), CYP2F2(-/-) (KO), and CYP2F2(-/-) (CYP2F1, 2B6, 2A13-transgene) (TG; humanized) mice following exposure for up to 104 weeks to 0- or 120-ppm styrene vapor. Five mice per treatment group were sacrificed at 1, 26, 52, and 78 weeks. Additional 50 mice per treatment group were followed until death or 104 weeks of exposure. Cytotoxicity was present in the terminal bronchioles of some CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Hyperplasia in the terminal bronchioles was present in CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Increased cell proliferation, measured by KI-67 staining, occurred in CD-1 and WT mice exposed to styrene for 1 week, but not after 26, 52, or 78 weeks, nor in KO or TG mice. Styrene increased the incidence of bronchioloalveolar adenomas and carcinomas in CD-1 mice. No increase in lung tumors was found in WT despite clear evidence of lung toxicity, or, KO or TG mice. The absence of preneoplastic lesions and tumorigenicity in KO and TG mice indicates that mouse-specific CYP2F2 metabolism is responsible for both the short-term and chronic toxicity and tumorigenicity of styrene, and activation of styrene by CYP2F2 is a rodent MOA that is neither quantitatively or qualitatively relevant to humans.


Subject(s)
Carcinogens/toxicity , Cytochrome P-450 Enzyme System/genetics , Lung Neoplasms/pathology , Lung/pathology , Styrene/toxicity , Animals , Bronchioles/drug effects , Bronchioles/pathology , Carcinogens/administration & dosage , Humans , Inhalation Exposure , Lung Neoplasms/chemically induced , Male , Mice , Mice, Transgenic , Styrene/administration & dosage
4.
Toxicol Appl Pharmacol ; 335: 28-40, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28951217

ABSTRACT

Styrene increased lung tumors in mice at chronic inhalation exposures of 20ppm and greater. MIEs, KEs and MFs were examined using gene expression in three strains of male mice (the parental C57BL/6 strain, a CYP2F2(-/-) knock out and a CYP2F2(-/-) transgenic containing human CYP2F1, 2A13 and 2B6). Exposures were for 1-day and 1, 4 and 26weeks. After 1-day exposures at 1, 5, 10, 20, 40 and 120ppm significant increases in differentially expressed genes (DEGs) occurred only in parental strain lungs where there was already an increase in DEGs at 5ppm and then many thousands of DEGs by 120ppm. Enrichment for 1-day and 1-week exposures included cell cycle, mitotic M-M/G1 phases, DNA-synthesis and metabolism of lipids and lipoproteins pathways. The numbers of DEGs decreased steadily over time with no DEGs meeting both statistical significance and fold-change criteria at 26weeks. At 4 and 26weeks, some key transcription factors (TFs) - Nr1d1, Nr1d2, Dbp, Tef, Hlf, Per3, Per2 and Bhlhe40 - were upregulated (|FC|>1.5), while others - Npas, Arntl, Nfil3, Nr4a1, Nr4a2, and Nr4a3 - were down-regulated. At all times, consistent changes in gene expression only occurred in the parental strain. Our results support a MIE for styrene of direct mitogenicity from mouse-specific CYP2F2-mediated metabolites activating Nr4a signaling. Longer-term MFs include down-regulation of Nr4a genes and shifts in both circadian clock TFs and other TFs, linking circadian clock to cellular metabolism. We found no gene expression changes indicative of cytotoxicity or activation of p53-mediated DNA-damage pathways.


Subject(s)
Gene Expression Profiling/methods , Lung/drug effects , Styrenes/toxicity , Toxicogenetics/methods , Transcriptome/drug effects , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/metabolism , Circadian Rhythm/drug effects , Circadian Rhythm/genetics , Circadian Rhythm Signaling Peptides and Proteins/genetics , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Cytochrome P-450 CYP2B6/genetics , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 Enzyme System/deficiency , Cytochrome P-450 Enzyme System/genetics , Cytochrome P450 Family 2/genetics , Cytochrome P450 Family 2/metabolism , Dose-Response Relationship, Drug , Gene Regulatory Networks/drug effects , Genotype , Inhalation Exposure/adverse effects , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lung/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Phenotype , Signal Transduction/drug effects , Signal Transduction/genetics , Styrenes/metabolism , Time Factors , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Regul Toxicol Pharmacol ; 73(2): 501-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26456664

ABSTRACT

4-Methylimidazole (4-MEI) occurs in certain foods and beverages as a product of browning reactions. An increased incidence of lung tumors was reported in mice, but not rats, exposed to levels of 4-MEI in their diet that far exceed human dietary intake. This investigation evaluated the hypothesis that 4-MEI induces mouse lung tumors by the same mode of action (MOA) as styrene: CYP2F2 metabolic activation and increased BrdU labeling. Using styrene (200 mg/kg/day by gavage) as a positive control, histopathology and DNA synthesis (measured by BrdU incorporation) in the bronchiolar region were evaluated in: (1) a 5-day comparative toxicity study in C57BL/6 "wild type" and CYP2F2 "knock out" (KO) mice given 4-MEI at the same dietary concentrations used in the NTP cancer bioassay, and (2) a 13-week comparative toxicity study of C57BL/6 and B6C3F1 mice receiving 0, 1250 or 2500 ppm of 4-MEI in the diet for 6, 15, 34 and 91 days. In contrast to styrene, 4-MEI had no consistent effect on BrdU labeling or histopathology in the lungs of mice in the dose range that had been shown to produce lung tumors in another study. The results of these studies do not support the hypothesis that 4-MEI and styrene induce lung tumors by the same MOA.


Subject(s)
Imidazoles/toxicity , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Styrene/toxicity , Animals , Drug Evaluation, Preclinical/methods , Female , Imidazoles/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Styrene/administration & dosage
6.
Xenobiotica ; 41(1): 6-23, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20925585

ABSTRACT

4-Vinylphenol (4VP) has been identified as a minor urinary metabolite of styrene in rat and human volunteers. This compound has been shown to be more hepatotoxic and pneumotoxic than both styrene and styrene oxide at lower doses in rats and mice. To explore the possible toxicity mechanism of 4VP, the current study was conducted to investigate the metabolism of 4VP, the glutathione (GSH) conjugation of the metabolites of 4VP and its cytochrome P(450) (CYP) specificity in epoxidation in different microsomes in vitro. Incubations of 4VP with mouse lung microsomes afforded two major metabolites which were identified as 4-(2-oxiranyl)-phenol of 4VP (4VPO) and 4VP catechol. 4VPO was found to react with GSH to form GSH conjugate and 4VP catechol was found to further be metabolized to electrophilic species which react with GSH to form the corresponding 4VP catechol GSH conjugates. Relative formation rates for those GSH conjugates and the regioisomer formation of 4VPO-GSH conjugates with both inhibitors of CYP 2F2 and CYP 2E1 in microsomal incubation condition were also investigated. This present study provides better insight on the lung toxicity seen with 4VP, the toxic metabolite of commercial styrene.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Glutathione/metabolism , Phenols/metabolism , Animals , Carbon Radioisotopes , Catechols/metabolism , Chromatography, High Pressure Liquid , Ditiocarb/metabolism , Humans , Isoenzymes/metabolism , Lung/metabolism , Male , Metabolic Networks and Pathways , Mice , Microsomes, Liver/enzymology , NADP/metabolism , Oxidation-Reduction , Phenols/chemistry , Radioactivity , Rats , Spectrometry, Mass, Electrospray Ionization , Substrate Specificity
7.
Regul Toxicol Pharmacol ; 55(2): 205-18, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19589367

ABSTRACT

It is proposed that metabolism of several structurally-related chemicals by CYP2F isoforms of the cytochromes P450 family results in a cytotoxicity-driven mode of action in organs high in CYP2F; namely, CYP2F2 in nasal and lung tissue in mice and CYP2F4 in nasal tissues in rats. Importantly, the CYP2F1 isozyme expressed in humans appears to have a low capacity to metabolize these compounds. In mice, the resultant cytotoxicity and subsequent regenerative hyperplasia is hypothesized drive an increase in lung tumors that are mostly benign and are not life shortening. Although a complete picture of the mode of action has not been developed in any one model compound, data from the individual compounds can be combined to synthesize and reinforce confidence in the CYP2F toxicity hypothesis. For coumarin, naphthalene, and styrene, inhibition of toxicity with inhibition of CYP2F2 has been demonstrated. Rat CYP2F4 appears to be equally active in metabolizing these chemicals; however, CYP2F4 occurs to a much lower extent in rat Clara cells and levels of metabolites produced are not sufficient to cause lung cytotoxicity. Human lungs contain far fewer of Clara cells than rats or mice, and human lung microsomes failed to, or only marginally, metabolize these compounds. In addition, the human lung differs markedly from the mouse lung in the morphology of its Clara cells, which make humans much less sensitive than mice to toxicity due to reactive metabolites. The absence of a role for CYP2E1-generated metabolites (primarily alkyl oxidation vs. ring-oxidation) in mouse pulmonary effects was demonstrated by the lack of protection from styrene toxicity by CYP2E1 inhibitor, or reduction of toxicity in CYP2E1-knockout mice, and lack of lung toxicity of the primary metabolite of ethylbenzene. The chemicals used as examples of this mode of action generally are negative in standard genotoxicity assays. Apart from increased SCE, no consistent pattern in genotoxicity results was found among these chemicals. Thus, while lung tumors from bronchiolar cell cytotoxicity are theoretically possible in humans, it is unlikely that metabolism by CYP2F1 would produce levels of cytotoxic metabolites in human lungs sufficient to result in lung cytotoxic responses and thus tumors. Therefore, it is unlikely several chemicals that cause mouse lung tumors via CYP2F2 metabolism will cause lung tumors in humans.


Subject(s)
Adenocarcinoma/chemically induced , Adenoma/chemically induced , Bronchioles/drug effects , Carcinogens/toxicity , Cytochrome P-450 Enzyme System/metabolism , Lung Neoplasms/chemically induced , Adenocarcinoma/enzymology , Adenoma/enzymology , Animals , Bronchioles/enzymology , Bronchioles/pathology , Carcinogens/chemistry , Carcinogens/metabolism , Cell Proliferation/drug effects , Coumarins/chemistry , Coumarins/metabolism , Coumarins/toxicity , Cytochrome P-450 Enzyme Inhibitors , Disease Models, Animal , Endpoint Determination , Enzyme Inhibitors/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Epithelial Cells/pathology , Humans , Inhalation Exposure , Isoenzymes , Lung Neoplasms/enzymology , Mice , Mice, Knockout , Mutagenicity Tests , Naphthalenes/chemistry , Naphthalenes/metabolism , Naphthalenes/toxicity , Rats , Structure-Activity Relationship , Styrene/chemistry , Styrene/metabolism , Styrene/toxicity
8.
Crit Rev Toxicol ; 39(4): 347-63, 2009.
Article in English | MEDLINE | ID: mdl-19514918

ABSTRACT

There are no published cancer studies of methanol-exposed cohorts. Genotoxicity studies do not suggest carcinogenic activity from methanol exposure. Oncogenicity studies of methanol were conducted by inhalation for approximately 20 hrs/day at up to 1000 ppm in F344 rats and B6C3F1 mice (NEDO), and by incorporation into drinking water at up to 20,000 ppm in Sprague-Dawley rats (Ramazzini Foundation, by Soffritti et al.). No increased neoplasms were found in the NEDO rat and mouse inhalation studies, even at air levels (up to 1000 ppm for >19 hours/day, 7 days/week) that caused 10-fold increased blood methanol levels. The maximum dose level was 600 mg/kg/day. The breakdown of methanol to formaldehyde in rats is saturated at doses above 600 mg/kg according to Horton et al. Thus, higher inhalation exposure concentrations are not expected to lead to tumors in rats or mice. In the Soffritti et al. study there was excessive early mortality, and lung pathology (inflammation, dysplasia, or neoplasm) was present in 87-94% of those dying anytime in the study. Soffritti et al. reported lympho-immunoblastic lymphoma. There are no historical control data to which this study can be compared because this diagnosis is not used by any other pathologist in animal studies. Lung infections probably played a role in formation of the lesions called lympho-immunoblastic lymphoma in the Ramazzini methanol study. The data from genotoxicity studies, the inhalation and drinking water oncogenicity studies of methanol in rats and mice, and mode of action considerations support a conclusion that methanol is not likely to be carcinogenic in humans.


Subject(s)
Methanol/toxicity , Risk Assessment , Administration, Inhalation , Animals , Carcinogenicity Tests , Carcinogens/toxicity , Humans , Inhalation Exposure , Lung/pathology , Methanol/administration & dosage , Mice , Mice, Inbred Strains , Neoplasms, Experimental/pathology , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Toxicity Tests , Water Pollutants, Chemical/toxicity , Water Supply/analysis
9.
Regul Toxicol Pharmacol ; 47(2): 156-65, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17084497

ABSTRACT

There are no reports of studies that evaluate if methyl tertiary-butyl ether (MTBE) exposure causes cancer in humans. This evaluation of MTBE carcinogenicity is based on the results of animal studies. A weak tumorigenic response was reported for both MTBE and TBA in one tumor type (kidney) in male rats, for MTBE in one other tumor type (testicular) in male rats, for MTBE in one tumor type (liver) in female mice, and for TBA in one tumor type (thyroid) in female mice. The weight of the evidence does not support a genotoxic mode of action (MOA). Non-genotoxic MOAs have been demonstrated or suggested that correspond to the weak tumorigenic responses. These MOAs either do not occur in humans or humans are much less susceptible to these effects. It is, therefore, unlikely that humans would be exposed to sufficient levels of MTBE to cause these tumorigenic responses.


Subject(s)
Carcinogens/toxicity , Methyl Ethers/toxicity , Animals , Carcinogenicity Tests , Carcinogens/administration & dosage , Endpoint Determination , Female , Humans , Male , Methyl Ethers/administration & dosage , Mice , Mutagenicity Tests , Neoplasms/chemically induced , Predictive Value of Tests , Rats , Sex Factors , Species Specificity
11.
Birth Defects Res B Dev Reprod Toxicol ; 74(3): 211-20, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15880800

ABSTRACT

This study was conducted to evaluate the potential adverse effects of styrene on reproductive capability from whole-body inhalation exposure of F0 and F1 parental animals. Assessments included gonadal function, estrous cyclicity, mating behavior, conception rate, gestation, parturition, lactation, and weaning in the F0 and F1 generations, and F1 generation offspring growth and development. Four groups of male and female Crl:CD(SD)IGS BR rats (25/sex/group) were exposed to 0, 50, 150, and 500 ppm styrene for 6 hr daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure for the F0 and F1 females continued throughout mating and gestation through gestation day 20. Inhalation exposure of the F0 and F1 females was suspended from gestation day 21 through lactation day 4. On lactation days 1 through 4, the F0 and F1 females received styrene in virgin olive oil via oral gavage at dose levels of 66, 117, and 300 mg/kg/day (divided into three equal doses, approximately 2 hr apart). These oral dosages were calculated to provide similar maternal blood peak concentrations as provided by the inhalation exposures. Inhalation exposure of the F0 and F1 females was re-initiated on lactation day 5. Styrene exposure did not affect survival or clinical observations. Rats in the 150- and 500-ppm groups in both parental generations gained weight more slowly than the controls. There were no indications of adverse effects on reproductive performance in either the F0 or F1 generation. Male and female mating and fertility indices, pre-coital intervals, spermatogenic endpoints, reproductive organ weights, lengths of estrous cycle and gestation, live litter size and postnatal survival were similar in all exposure groups. Additionally, ovarian follicle counts and corpora lutea counts for the F1 females in the high-exposure group were similar to the control values. No adverse exposure-related macroscopic pathology was noted at any exposure level in the F0 and F1 generations. A previously characterized pattern of degeneration of the olfactory epithelium that lines the dorsal septum and dorsal and medial aspects of the nasal turbinates occurred in the F0 and F1 generation animals from the 500-ppm group. In the 500-ppm group, F2 birthweights were reduced compared to the control and F2 offspring from both the 150- and 500-ppm exposure groups gained weight more slowly than the controls. Based on the results of this study, an exposure level of 50 ppm was considered to be the NOAEL for F0 and F1 parental systemic toxicity; the NOAEL for F0 and F1 reproductive toxicity was 500 ppm or greater.


Subject(s)
Maternal Exposure , Paternal Exposure , Reproduction/drug effects , Styrene/toxicity , Animals , Female , Inhalation Exposure , Male , No-Observed-Adverse-Effect Level , Rats , Rats, Inbred Strains , Styrene/administration & dosage
12.
Birth Defects Res B Dev Reprod Toxicol ; 74(3): 221-32, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15880801

ABSTRACT

This study was conducted to assess potential adverse functional and/or morphological effects of styrene on the neurological system in the F2 offspring following F0 and F1 generation whole-body inhalation exposures. Four groups of male and female Crl:CD (SD)IGS BR rats (25/sex/group) were exposed to 0, 50, 150, and 500 ppm styrene for 6 hr daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure continued for the F0 and F1 females throughout mating and through gestation day 20. On lactation days 1 through 4, the F0 and F1 females received styrene in virgin olive oil via oral gavage at dose levels of 66, 117, and 300 mg/kg/day (divided into three equal doses, approximately 2 hr apart). Inhalation exposure of the F0 and F1 females was re-initiated on lactation day 5 and continued through weaning of the F1 or F2 pups on postnatal day (PND) 21. Developmental landmarks were assessed in F1 and F2 offspring. The neurological development of randomly selected pups from the F2 generation was assessed by functional observational battery, locomotor activity, acoustic startle response, learning and memory evaluations, brain weights and dimension measurements, and brain morphometric and histologic evaluation. Styrene exposure did not affect survival or the clinical condition of the animals. As expected from previous studies, slight body weight and histopathologic effects on the nasal olfactory epithelium were found in F0 and F1 rats exposed to 500 ppm and, to a lesser extent, 150 ppm. There were no indications of adverse effects on reproductive performance in either the F0 or F1 generation. There were exposure-related reductions in mean body weights of the F1 and F2 offspring from the mid and high-exposure groups and an overall pattern of slightly delayed development evident in the F2 offspring only from the 500-ppm group. This developmental delay included reduced body weight (which continued through day 70) and slightly delayed acquisition of some physical landmarks of development. Styrene exposure of the F0 and F1 animals had no effect on survival, the clinical condition or necropsy findings of the F2 animals. Functional observational battery evaluations conducted for all F1 dams during the gestation and lactation periods and for the F2 offspring were unaffected by styrene exposure. Swimming ability as determined by straight channel escape times measured on PND 24 were increased, and reduced grip strength values were evident for both sexes on PND 45 and 60 in the 500-ppm group compared to controls. There were no other parental exposure-related findings in the F2 pre-weaning and post-weaning functional observational battery assessments, the PND 20 and PND 60 auditory startle habituation parameters, in endpoints of learning and memory performance (escape times and errors) in the Biel water maze task at either testing age, or in activity levels measured on PND 61 in the 500-ppm group. Taken together, the exposure-related developmental and neuromotor changes identified in F2 pups from dams exposed to 500 ppm occurred in endpoints known to be both age- and weight-sensitive parameters, and were observed in the absence of any other remarkable indicators of neurobehavioral toxicity. Based on the results of this study, an exposure level of 50 ppm was considered to be the NOAEL for growth of F2 offspring; an exposure level of 500 ppm was considered to be the NOAEL for F2 developmental neurotoxicity.


Subject(s)
Brain/drug effects , Neurotoxicity Syndromes/etiology , Styrene/toxicity , Animals , Body Weight/drug effects , Brain/pathology , Female , Inhalation Exposure , Learning/drug effects , Male , Maternal Exposure , Maze Learning/drug effects , Memory/drug effects , Motor Activity/drug effects , Nervous System/drug effects , Nervous System/growth & development , Paternal Exposure , Rats , Rats, Inbred Strains , Reproduction/drug effects , Styrene/administration & dosage
13.
J Toxicol Environ Health A ; 68(3): 229-37, 2005 Feb 13.
Article in English | MEDLINE | ID: mdl-15762181

ABSTRACT

Styrene produced cytotoxicity in the terminal bronchioles of mice, but not rats, due to metabolites produced in situ by CYP2F2 metabolism. It has generally been presumed that styrene toxicity is mediated by styrene 7,8-oxide, but styrene oxide is not much more toxic than styrene. In contrast, ring-oxidized metabolites (4-vinylphenol or its metabolites) induce much greater toxicity. Administration of 4-vinylphenol results in pneumotoxicity, based on analysis of bronchoalveolar lavage fluid (BALF) at a 5- to 10 fold lower dose than does styrene oxide. In the current research, studies demonstrated that ip administration of 4-vinylphenol for 14 consecutive days at dosages of 6, 20, or 60 mg/kg/d (split into 3 doses) produced cytotoxicity in the terminal bronchioles of mice, but not rats. While higher doses of 4-vinylphenol produced adverse effects in both liver and lung, no liver toxicity was seen in mice exposed to 60 mg/kg/d for 14 d. Approximately 4 d was required for BALF parameters to return to normal following a single administration of 4-vinylphenol. These studies add further support for the role of ring-oxidized metabolites in the pneumotoxicity induced by styrene in mice and the lack thereof in rats.


Subject(s)
Phenols/toxicity , Respiratory Mucosa/drug effects , Styrene/metabolism , Animals , Bronchi/drug effects , Drug Administration Schedule , Female , Lung Diseases/chemically induced , Male , Mice , Phenols/metabolism , Rats , Rats, Sprague-Dawley , Respiratory Mucosa/cytology , Styrene/toxicity
14.
Toxicol Sci ; 81(2): 502-11, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15229367

ABSTRACT

Ethylene glycol (CAS RN 107-21-1) can cause kidney toxicity via the formation of calcium oxalate crystals in a variety of species, including humans. Numerous repeated dose studies conducted in rats have indicated that male rats are more susceptible than female rats. Furthermore, subchronic and chronic studies using different dietary exposure regimens have indicated that male Wistar rats may be more sensitive to renal toxicity than male Fischer-344 (F-344) rats. This study was conducted to compare the toxicity of ethylene glycol in the two strains of rats under identical exposure conditions and to evaluate the potential contribution of toxicokinetic differences to strain sensitivity. Ethylene glycol was mixed in the diet at concentrations to deliver constant target dosage levels of 0, 50, 150, 500, or 1000 mg/kg/day for 16 weeks to groups of 10 male Wistar and 10 male F-344 rats based on weekly group mean body weights and feed consumption. Kidneys were examined histologically for calcium oxalate crystals and pathology. Samples of blood, urine, and kidneys from satellite animals exposed to 0, 150, 500, or 1000 mg/kg/day for 1 or 16 weeks were analyzed for ethylene glycol, glycolic acid, and oxalic acid. Treatment of Wistar rats at 1000 mg/kg/day resulted in the death of two rats; in addition, at 500 and 1000 mg/kg/day, group mean body weights were decreased compared to control throughout the 16 weeks. In F-344 rats exposed at 1000 mg/kg/day and in Wistar rats receiving 500 and 1000 mg/kg/day, there were lower urine specific gravities, higher urine volumes, and increased absolute and relative kidney weights. In both strains of rats treated at 500 and 1000 mg/kg/day, some or all treated animals had increased calcium oxalate crystals in the kidney tubules and crystal nephropathy. The effect was more severe in Wistar rats than in F-344 rats. Accumulation of oxalic acid in the kidneys of both strains of rats was consistent with the dose-dependent and strain-dependent toxicity. As the nephrotoxicity progressed over the 16 weeks, the clearance of ethylene glycol and its metabolites decreased, exacerbating the toxicity. Benchmark dose analysis indicated a BMDL05 for kidney toxicity in Wistar rats of 71.5 mg/kg/day; nearly fourfold lower than in F-344 rats (285 mg/kg/day). This study confirms that the Wistar rat is more sensitive to ethylene glycol-induced renal toxicity than the F-344 rat and indicates that metabolism or clearance plays a role in the strain differences.


Subject(s)
Ethylene Glycol/toxicity , Animals , Biotransformation , Body Weight/drug effects , Diet , Drinking/drug effects , Ethylene Glycol/pharmacokinetics , Glycolates/pharmacokinetics , Glycolates/toxicity , Kidney/metabolism , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Male , Organ Size/drug effects , Oxalic Acid/pharmacokinetics , Oxalic Acid/toxicity , Rats , Rats, Inbred F344 , Rats, Wistar , Tissue Distribution , Water/metabolism
15.
Regul Toxicol Pharmacol ; 35(3): 308-19, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12202046

ABSTRACT

Mice are particularly sensitive to respiratory tract toxicity following styrene exposure. Inhalation of styrene by mice results in cytotoxicity in terminal bronchioles, followed by increased incidence of bronchioloalveolar tumors, as well as degeneration and atrophy of nasal olfactory epithelium. In rats, no effects on terminal bronchioles are seen, but effects in the nasal olfactory epithelium do occur, although to a lesser degree and from higher exposure concentrations. In addition, cytotoxicity and tumor formation are not related to blood levels of styrene or styrene oxide (SO) as measured in chronic studies. Whole-body metabolism studies have indicated major differences in styrene metabolism between rats and mice. The major differences are 4- to 10-fold more ring-oxidation and phenylacetaldehyde pathways in mice compared to rats. The data indicate that local metabolism of styrene is responsible for cytotoxicity in the respiratory tract. Cytotoxicity is seen in tissues that are high in CYP2F P450 isoforms. These tissues have been demonstrated to produce a high ratio of R-SO compared to S-SO (at least 2.4 : 1). In other rat tissues the ratio is less than 1, while in mouse liver the ratio is about 1.1. Inhibition of CYP2F with 5-phenyl-1-pentyne prevents the styrene-induced cytotoxicity in mouse terminal bronchioles and nasal olfactory epithelium. R-SO has been shown to be more toxic to mouse terminal bronchioles than S-SO. In addition, 4-vinylphenol (ring oxidation of styrene) has been shown to be highly toxic to mouse terminal bronchioles and is also metabolized by CYP2F. In human nasal and lung tissues, styrene metabolism to SO is below the limit of detection in nearly all samples, and the most active sample of lung was approximately 100-fold less active than mouse lung tissue. We conclude that styrene respiratory tract toxicity in mice and rats, including mouse lung tumors, are mediated by CYP2F-generated metabolites. The PBPK model predicts that humans do not generate sufficient levels of these metabolites in the terminal bronchioles to reach a toxic level. Therefore, the postulated mode of action for these effects indicates that respiratory tract effects in rodents are not relevant for human risk assessment.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Lung Neoplasms/chemically induced , Respiratory System/drug effects , Styrene/toxicity , Animals , Humans , Inhalation Exposure , Isoenzymes , Lung/drug effects , Lung/metabolism , Lung Neoplasms/enzymology , Mice , Models, Biological , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Rats , Respiratory System/enzymology , Risk Assessment , Species Specificity , Styrene/pharmacokinetics
16.
Inhal Toxicol ; 14(8): 789-834, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12122565

ABSTRACT

Styrene (ST) is widely used to manufacture resins, glass-reinforced plastics, and a number of commercially important polymers (Miller et al., 1994). Chronic ST inhalation studies in rodents have demonstrated unique species specificity in the resulting pulmonary toxicity and carcinogenicity. Increased incidences of pulmonary bronchioloalveolar tumors have been observed in mice, but not in rats. No other tumor type was increased significantly in either species. Clara cells lining the respiratory epithelium metabolize ST to styrene 7,8-oxide (SO), which is cytotoxic and weakly genotoxic. Rodent species show marked differences in the distribution and regional density of Clara cells within the respiratory tract, as well as in their capacity to produce and eliminate SO. A mode of action-based physiologically based pharmacokinetic (PBPK) model was developed to predict the concentration of ST and SO in blood, liver, and the respiratory-tract tissues, particularly in terminal bronchioles (target tisue), in order to conduct interspecies extrapolations and determine the extent to which there is a pharmacokinetic basis for the observed species specificity. This PBPK model has a multicompartment description of the respiratory tract and incorporates species-specific quantitative information on respiratory-tract physiology, cellular composition, and metabolic capacity. The model is validated against multiple data sets, including blood, liver, and whole lung tissue concentration of ST and SO following multiple routes of exposure. The trend in neoplastic incidences in mice correlated well with model-estimated SO concentration in the terminal bronchioles. The PBPK model predicts a 10-fold lower SO concentration in the terminal bronchioles in rats compared to mice, which is consistent with the observed species sensitivity to the development of respiratory-tract neoplasms. The model-based analysis suggests that humans would be expected to be 100-fold less sensitive to ST-inducted lung tumors than mice, based on pharmacokinetic differences. Pharmacodynamic factors are also expected to contribute to species sensitivity, potentially augmenting pharmacokinetics-based differences.


Subject(s)
Carcinogens/pharmacokinetics , Epoxy Compounds/pharmacokinetics , Inhalation Exposure , Models, Biological , Respiratory System/pathology , Animals , Carcinogens/administration & dosage , Epoxy Compounds/administration & dosage , Forecasting , Humans , Liver/chemistry , Mice , Rats , Respiratory System/chemistry , Respiratory System/drug effects , Styrene , Tissue Distribution
17.
Inhal Toxicol ; 14(8): 835-54, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12122566

ABSTRACT

Inhaled vapors that are metabolized locally in the respiratory-tract tissues and systemically in the liver and other organs have different dose-response relationships at the portal of entry compared to systemic target organs. For instance, inhaled chloroform and styrene cause cytotoxicity in the nasal cavity at concentrations much lower that those causing hepatic or renal toxicity. Here, we develop a physiologically based pharmacokinetic (PBPK) model that incorporates a multicompartment, unidirectional flow description of the respiratory tract within a whole-body model in order to estimate both respiratory tract and hepatic metabolism. We then use this model to study the difference in exposure-dose relationship between the respiratory-tract tissues and the liver. The integrated PBPK model confirms that for soluble vapors the exposure-dose curve for metabolism in respiratory-tract tissue will be shifted dramatically to lower concentrations compared to the exposure-dose relationship in systemic organs. This behavior is the result of direct air to tissue equilibration at the portal of entry while other systemic tissues only respond to concentrations in the blood. For cases where metabolism/metabolites of inhaled vapors produce local toxicity, portal of entry effects are expected at lower concentrations and, in general, will be the limiting response for setting reference concentrations (RfCs) for many compounds. The difference in dose-response relationships for metabolism in the respiratory tract versus systemic organs depends on blood/air and blood/tissue partition coefficients and on the degree of systemic extraction of the metabolized vapors.


Subject(s)
Hydrocarbons/pharmacokinetics , Inhalation Exposure , Liver/pathology , Models, Biological , Organic Chemicals/pharmacokinetics , Respiratory System/drug effects , Animals , Dose-Response Relationship, Drug , Hydrocarbons/adverse effects , Liver/chemistry , Liver/drug effects , Male , Organic Chemicals/adverse effects , Rats , Rats, Inbred F344 , Respiratory System/chemistry , Respiratory System/pathology , Tissue Distribution , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...