Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Biomolecules ; 14(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38672454

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by severe deficits in social communication and interaction, repetitive movements, abnormal focusing on objects, or activity that can significantly affect the quality of life of the afflicted. Neuronal and glial cells have been implicated. It has a genetic component but can also be triggered by environmental factors or drugs. For example, prenatal exposure to valproic acid or acetaminophen, or ingestion of propionic acid, can increase the risk of ASD. Recently, epigenetic influences on ASD have come to the forefront of investigations on the etiology, prevention, and treatment of this disorder. Epigenetics refers to DNA modifications that alter gene expression without making any changes to the DNA sequence. Although an increasing number of pharmaceuticals and environmental chemicals are being implicated in the etiology of ASD, here, we specifically focus on the molecular influences of the abovementioned chemicals on epigenetic alterations in neuronal and glial cells and their potential connection to ASD. We conclude that a better understanding of these phenomena can lead to more effective interventions in ASD.


Subject(s)
Autism Spectrum Disorder , Epigenesis, Genetic , Neuroglia , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/chemically induced , Humans , Epigenesis, Genetic/drug effects , Neuroglia/metabolism , Neuroglia/drug effects , Valproic Acid/pharmacology , Valproic Acid/adverse effects , Propionates/pharmacology , Animals , Acetaminophen/adverse effects , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , DNA Methylation/drug effects
2.
Ann Gen Psychiatry ; 22(1): 15, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37085865

ABSTRACT

BACKGROUND: Sexual dysfunction is a common side effect of Serotonergic antidepressants (SA) treatment, and persists in some patients despite drug discontinuation, a condition termed post-SSRI sexual dysfunction (PSSD). The risk for PSSD is unknown but is thought to be rare and difficult to assess. This study aims to estimate the risk of erectile dysfunction (ED) and PSSD in males treated with SAs. METHODS: A 19-year retrospective cohort analysis was conducted using a computerized database of the largest HMO in Israel. ED was defined by phosphodiesterase-5 inhibitors prescriptions. 12,302 males aged 21-49 met the following criteria: non-smokers, no medical or psychiatric comorbidities or medications associated with ED, no alcohol or substance use. Logistic regression was used for estimation of ED risk in SA-treated subjects compared to non-SA-treated controls, assessed with and without the effects of age, body mass index (BMI), socioeconomic status (SES), depression and anxiety, yielding crude and adjusted odds ratios (cOR and aOR, respectively). RESULTS: SAs were associated with an increased risk for ED (cOR = 3.6, p < 0.000001, 95% CI 2.8-4.8), which remained significant after adjusting for age, SES, BMI, depression and anxiety (aOR = 3.2, p < 0.000001, 95% CI 2.3-4.4). The risk for PSSD was 1 in 216 patients (0.46%) treated with SAs. The prevalence of PSSD was 4.3 per 100,000. CONCLUSIONS: This work offers a first assessment of the small but significant risk of irreversible ED associated with the most commonly prescribed class of antidepressants which should enhance the process of receiving adequate informed consent for therapy.

3.
J Diabetes Res ; 2023: 9947294, 2023.
Article in English | MEDLINE | ID: mdl-36815184

ABSTRACT

Epigenetic changes in pancreatic beta cells caused by sustained high blood glucose levels, as seen in prediabetic conditions, may contribute to the etiology of diabetes. To delineate a direct cause and effect relationship between high glucose and epigenetic changes, we cultured human pancreatic beta cells derived from induced pluripotent stem cells and treated them with either high or low glucose, for 14 days. We then used the Arraystar 4x180K HG19 RefSeq Promoter Array to perform whole-genome DNA methylation analysis. A total of 478 gene promoters, out of a total of 23,148 present on the array (2.06%), showed substantial differences in methylation (p < 0.01). Out of these, 285 were hypomethylated, and 193 were hypermethylated in experimental vs. control. Ingenuity Pathway Analysis revealed that the main pathways and networks that were differentially methylated include those involved in many systems, including those related to development, cellular growth, and proliferation. Genes implicated in the etiology of diabetes, including networks involving glucose metabolism, insulin secretion and regulation, and cell cycle regulation, were notably altered. Influence of upstream regulators such as MRTFA, AREG, and NOTCH3 was predicted based on the altered methylation of their downstream targets. The study validated that high glucose levels can directly cause many epigenetic changes in pancreatic beta cells, suggesting that this indeed may be a mechanism involved in the etiology of diabetes.


Subject(s)
Insulin-Secreting Cells , Humans , DNA Methylation , Epigenesis, Genetic , Insulin Secretion , Glucose/pharmacology
4.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835589

ABSTRACT

Throughout the animal kingdom, our two chemical senses, olfaction and gustation, are defined by two primary factors: genomic architecture of the organisms and their living environment. During the past three years of the global COVID-19 pandemic, these two sensory modalities have drawn much attention at the basic science and clinical levels because of the strong association of olfactory and gustatory dysfunction with viral infection. Loss of our sense of smell alone, or together with a loss of taste, has emerged as a reliable indicator of COVID-19 infection. Previously, similar dysfunctions have been detected in a large cohort of patients with chronic conditions. The research focus remains on understanding the persistence of olfactory and gustatory disturbances in the post-infection phase, especially in cases with long-term effect of infection (long COVID). Also, both sensory modalities show consistent age-related decline in studies aimed to understand the pathology of neurodegenerative conditions. Some studies using classical model organisms show an impact on neural structure and behavior in offspring as an outcome of parental olfactory experience. The methylation status of specific odorant receptors, activated in parents, is passed on to the offspring. Furthermore, experimental evidence indicates an inverse correlation of gustatory and olfactory abilities with obesity. Such diverse lines of evidence emerging from basic and clinical research studies indicate a complex interplay of genetic factors, evolutionary forces, and epigenetic alterations. Environmental factors that regulate gustation and olfaction could induce epigenetic modulation. However, in turn, such modulation leads to variable effects depending on genetic makeup and physiological status. Therefore, a layered regulatory hierarchy remains active and is passed on to multiple generations. In the present review, we attempt to understand the experimental evidence that indicates variable regulatory mechanisms through multilayered and cross-reacting pathways. Our analytical approach will add to enhancement of prevailing therapeutic interventions and bring to the forefront the significance of chemosensory modalities for the evaluation and maintenance of long-term health.


Subject(s)
COVID-19 , Olfaction Disorders , Animals , Humans , COVID-19/complications , Post-Acute COVID-19 Syndrome , Pandemics , Epigenesis, Genetic
5.
Neurotox Res ; 41(2): 141-148, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36585544

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease associated with loss of dopaminergic neurons in the substantia nigra pars compacta. Although aging is the primary cause, environmental and genetic factors have also been implicated in its etiology. In fact, the sporadic nature of PD (i.e., unknown etiology) renders the uncovering of the exact pathogenic mechanism(s) or development of effective pharmacotherapies challenging. In search of novel neuroprotectants, we showed that butyrate (BUT), a short-chain fatty acid, protects against salsolinol (SALS)-induced toxicity in human neuroblastoma-derived SH-SY5Y cells, which are considered an in-vitro model of PD. Dihydromyricetin (DHM), a flavonoid derived from Asian medicinal plant, has also shown effectiveness against oxidative damage and neuroinflammation, hallmarks of neurodegenerative diseases. Here we show that pretreatment of SH-SY5Y cells with DHM concentration-dependently prevented SALS-induced toxicity and that a combination of DHM and BUT resulted in a synergistic protection. The effects of both DHM and BUT in turn could be completely blocked by flumazenil (FLU), a GABAA antagonist acting at benzodiazepine receptor site, and by bicuculline (BIC), a GABAA antagonist acting at orthosteric site. Beta-hydroxybutyrate (BHB), a free fatty acid 3 (FA3) receptor antagonist, also fully blocked the protective effect of DHM. BHB was shown previously to only partially block the protective effect of BUT. Thus, there are some overlaps and some distinct differences in protective mechanisms of DHM and BUT against SALS-induced toxicity. It is suggested that a combination of DHM and BUT may have therapeutic potential in PD. However, further in-vivo verifications are necessary.


Subject(s)
Neuroblastoma , Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/prevention & control , Dopaminergic Neurons , Cell Line, Tumor , Neuroblastoma/pathology , Dopamine/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , gamma-Aminobutyric Acid
6.
Neurotox Res ; 40(3): 892-899, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35386023

ABSTRACT

Toxicity induced by binge alcohol drinking, particularly in adolescent and young adults, is of major medical and social consequence. Recently, we reported that butyrate, a short chain fatty acid, can protect against ethanol (ETOH)-induced toxicity in an in vitro model. In this study, we sought to evaluate the potential effectiveness of dihydromyricetin (DHM), a natural bioactive flavonoid, alone or in combination with butyrate in the same model. Exposure of SH-SY5Y cells for 24 h to 500 mM ETOH resulted in approximately 40% reduction in cell viability, which was completely prevented by 0.1 µM DHM. Combinations of DHM and butyrate provided synergistic protection against alcohol toxicity. Whereas butyrate effect was shown to be mediated primarily through fatty acid receptor 3 activation, DHM protection appears to be mediated primarily via benzodiazepine receptor site of GABAA receptor. This is based on the finding that DHM's effect could be completely prevented by pretreatment with flumazenil, a selective antagonist at this site, but not by bicuculline, a selective antagonist at the actual GABAA receptor binding site. These findings suggest potential utility of DHM alone or in combination with butyrate against ETOH-induced toxicity.


Subject(s)
Ethanol , Flavonols , Receptors, GABA-A , Butyrates , Cell Line, Tumor , Ethanol/toxicity , Flavonols/pharmacology , Humans , Receptors, GABA-A/metabolism
7.
Int J Risk Saf Med ; 33(1): 65-76, 2022.
Article in English | MEDLINE | ID: mdl-34719438

ABSTRACT

BACKGROUND: A set of enduring conditions have been reported in the literature involving persistent sexual dysfunction after discontinuation of serotonin reuptake inhibiting antidepressants, 5 alpha-reductase inhibitors and isotretinoin. OBJECTIVE: To develop diagnostic criteria for post-SSRI sexual dysfunction (PSSD), persistent genital arousal disorder (PGAD) following serotonin reuptake inhibitors, post-finasteride syndrome (PFS) and post-retinoid sexual dysfunction (PRSD). METHODS: The original draft was designed using data from two published case series (Hogan et al., 2014 and Healy et al., 2018), which represent the largest public collections of data on these enduring conditions. It was further developed with the involvement of a multidisciplinary panel of experts. RESULTS: A set of criteria were agreed upon for each of the above conditions. Features of PSSD, PFS and PRSD commonly include decreased genital and orgasmic sensation, decreased sexual desire and erectile dysfunction. Ancillary non-sexual symptoms vary depending on the specific condition but can include emotional blunting and cognitive impairment. PGAD presents with an almost mirror image of unwanted sensations of genital arousal or irritability in the absence of sexual desire. A new term, post-SSRI asexuality, is introduced to describe a dampening of sexual interest and pleasure resulting from a pre-natal or pre-teen exposure to a serotonin reuptake inhibitor. CONCLUSIONS: These criteria will help in both clinical and research settings. As with all criteria, they will likely need modification in the light of developments.


Subject(s)
Finasteride , Sexual Dysfunction, Physiological , Adolescent , Antidepressive Agents/adverse effects , Child , Finasteride/adverse effects , Humans , Isotretinoin/adverse effects , Male , Selective Serotonin Reuptake Inhibitors/adverse effects , Sexual Dysfunction, Physiological/chemically induced , Sexual Dysfunction, Physiological/diagnosis , Sexual Dysfunction, Physiological/psychology
8.
Neurotox Res ; 39(6): 2186-2193, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34554410

ABSTRACT

Alcohol use disorder (AUD), brought about by excessive alcohol use, is associated with damages to several organs including the brain. Chronic excessive use of alcohol can compromise intestinal integrity, leading to changes in gut microbiota (GM) composition known as dysbiosis. Dysbiosis, by disruption of the gut-brain axis (GBA), further exacerbates the deleterious effects of alcohol. One of the fermentation by-products of GM is butyrate (BUT), a short-chain fatty acid (SCFA) that plays an important role in maintaining homeostasis of the GBA. Alcohol metabolism results in formation of acetaldehyde, a highly reactive compound that reacts with dopamine in the brain to form toxic adducts such as salsolinol. Recent studies indicate potential neuro-protective effects of BUT against various toxicants including salsolinol. Here, we sought to investigate whether BUT can also protect against alcohol toxicity. Pretreatment of neuroblastoma-derived SH-SY5Y cells with 500 mM ethanol (ETOH) for 24 h resulted in approximately 40% reduction in cell viability, which was totally blocked by 10 µM of either BUT or AR 420,626 (AR), a selective fatty acid 3 receptor (FA3R) agonist. The neuro-protective effects of both BUT and AR were significantly (80%) attenuated by beta-hydroxy butyrate (BHB), a selective FA3R antagonist. Interestingly, combination of BUT and AR resulted in synergistic protection against ETOH, which was totally blocked by BHB. These findings suggest potential utility of butyrate and/or FA3R agonists against ETOH-induced toxicity.


Subject(s)
Butyric Acid/therapeutic use , Ethanol/toxicity , Neuroprotective Agents/therapeutic use , Neurotoxicity Syndromes/prevention & control , Cell Line, Tumor , Ethanol/antagonists & inhibitors , Humans , Neurotoxicity Syndromes/etiology
9.
Neurotox Res ; 38(3): 596-602, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32572814

ABSTRACT

Parkinson's disease (PD), a progressive neurodegenerative disorder, is associated with the destruction of dopamine neurons in the substantia nigra (SN) and the formation of Lewy bodies in basal ganglia. Risk factors for PD include aging, as well as environmental and genetic factors. Recent converging reports suggest a role for the gut microbiome and epigenetic factors in the onset and/or progression of PD. Of particular relevance and potential therapeutic targets in this regard are histone deacetylases (HDACs), enzymes that are involved in chromatin remodeling. Butyrate, a short-chain fatty acid (FA) produced in the gut and presumably acting via several G protein-coupled receptors (GPCRs) including FA3 receptors (FA3Rs), is a well-known HDAC inhibitor that plays an important role in maintaining homeostasis of the gut-brain axis. Recently, its significance in regulation of some critical brain functions and usefulness in neurodegenerative diseases such as PD has been suggested. In this study we sought to determine whether butyrate may have protective effects against salsolionl (SALS)-induced toxicity in SH-SY5Y cells. SALS, an endogenous product of aldehyde and dopamine condensation, may be selectively toxic to dopaminergic neurons. SH-SY5Y cells, derived from human neuroblastoma cells, are used as a model of these neurons. Exposure of SH-SY5Y cells for 24 h to 400 µM SALS resulted in approximately 60% cell death, which was concentration-dependently prevented by butyrate. The effects of butyrate in turn were significantly attenuated by beta-hydroxy butyrate (BHB), a selective FA3R antagonist. Moreover, a selective FA3R agonist (AR 420626) also provided protective effects against SALS, which was totally blocked by BHB. These findings provide further support that butyrate or an agonist of FA3R may be of therapeutic potential in PD.


Subject(s)
Butyrates/pharmacology , Dopaminergic Neurons/drug effects , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Apoptosis/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Neuroblastoma/drug therapy , Parkinson Disease/metabolism
10.
Prog Mol Biol Transl Sci ; 167: 1-24, 2019.
Article in English | MEDLINE | ID: mdl-31601399

ABSTRACT

With the aging population growing and the incidence of neurodegenerative diseases on the rise, the researchers in the field are yet more urgently challenged to slow and/or reverse the devastating consequences of such progression. The challenge is further enforced by psychiatric co-morbid conditions, particularly the feeling of despair in these population. Fortunately, as our understanding of the neurobiological substrates of maladies affecting the central nervous system increases, more therapeutic options are also presented. In this short review while providing evidence of shared biological substrates between Parkinson's disease and depression, novel therapeutic targets and drugs are suggested. The emphasis will be on neuroplasticity underscored by roles of neurotrophic and inflammatory factors. Examples of few therapeutic drugs as well as future directions are also touched upon.


Subject(s)
Antidepressive Agents/therapeutic use , Antiparkinson Agents/therapeutic use , Depression/drug therapy , Nerve Growth Factors/therapeutic use , Parkinson Disease/drug therapy , Comorbidity , Depression/epidemiology , Depression/pathology , Humans , Parkinson Disease/epidemiology , Parkinson Disease/pathology
11.
Behav Brain Res ; 370: 111968, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31125623

ABSTRACT

The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) may be of therapeutic potential in motor impairments associated with Parkinson disease (PD). Since depression is a common co-morbid condition with PD, we undertook this study to determine whether Hc-TeTx might also show antidepressant-like properties and whether central brain-derived neurotrophic factor (BDNF) and/or tumor necrosis factor (TNF)-alpha are also affected by it. Adult male Wistar-Kyoto rats, a putative animal model of depression, were treated with various doses of Hc-TeTx (0, 20, 40 and 60 µg/kg, IM) and their performance in the open field locomotor activity (OFLA) as well as in the forced swim test (FST) was evaluated at 24 h, one week and two weeks after the single injection. A separate group of rats were injected with 60 µg/kg Hc-TeTx and sacrificed 24 h later for neurochemical evaluations. Hc-TeTx resulted in a dose-dependent decrease in immobility score after 24 h, whereas OFLA was not affected. Concomitant with the 24 h behavioral effects, the levels of hippocampal and frontal cortical BDNF were significantly increased, whereas the levels of TNF-alpha in both these areas were significantly decreased. The decrease in immobility scores following higher doses of Hc-TeTx were still evident after one week, but not 2 weeks of rest. These results indicate long lasting antidepressant effects of a single Hc-TeTx dose and suggest potential utility of Hc-TeTx in PD-depression co-morbidity.


Subject(s)
Depression/drug therapy , Peptide Fragments/pharmacology , Tetanus Toxin/pharmacology , Animals , Antidepressive Agents/pharmacology , Brain/drug effects , Corpus Striatum/drug effects , Depression/metabolism , Depressive Disorder/drug therapy , Disease Models, Animal , Hippocampus/drug effects , Locomotion/drug effects , Male , Motor Activity/drug effects , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Peptide Fragments/metabolism , Rats , Rats, Inbred WKY , Tetanus Toxin/metabolism
12.
Neurochem Int ; 124: 19-24, 2019 03.
Article in English | MEDLINE | ID: mdl-30557592

ABSTRACT

Manganese (Mn) and iron (Fe) are trace elements that are essential for proper growth and physiological functions as both play critical role in a variety of enzymatic reactions. At high concentrations, however, they can be toxic and cause neurodegenerative disorders, particularly Parkinson-like syndromes. Nicotine, on the other hand, has been shown to have neuroprotective effects against various endogenous or exogenous toxins that selectively damage the dopaminergic cells. These cells include neuroblastoma-derived SH-SY5Y cells which express significant dopaminergic activity. However, practically no information on possible neuroprotective effects of nicotine against toxicity induced by trace elements is available. Therefore, in this study we investigated the effects of nicotine on toxicity induced by manganese or iron in these cells. Exposure of SH-SY5Y cells for 24 h to manganese (20 µM) or iron (20 µM) resulted in approximately 30% and 35% toxicity, respectively. Pretreatment with nicotine (1 µM) completely blocked the toxicities of Mn and Fe. The effects of nicotine, in turn, were blocked by selective nicotinic receptor antagonists. Thus, dihydro-beta erythroidine (DHBE), a selective alpha 4-beta 2 subtype antagonist and methyllycaconitine (MLA), a selective alpha7 antagonist, as well as mecamylamine, a non-selective nicotinic antagonist all dose-dependently blocked the protective effects of nicotine against both Mn and Fe. These findings provide further support for the potential utility of nicotine or nicotinic agonists in Parkinson's disease-like neurodegenerative disorders, including those that might be precipitated by trace elements, such as Fe and Mn. Moreover, both alpha4-beta2 and alpha7 nicotinic receptor subtypes appear to mediate the neuroprotective effects of nicotine against toxicity induced by these two trace metals.


Subject(s)
Cell Survival/drug effects , Cytoprotection/drug effects , Iron/toxicity , Manganese/toxicity , Nicotine/pharmacology , Parkinson Disease , Cell Line, Tumor , Cell Survival/physiology , Cytoprotection/physiology , Dose-Response Relationship, Drug , Humans , Nicotine/therapeutic use , Parkinson Disease/metabolism , Parkinson Disease/prevention & control
13.
BMC Microbiol ; 18(1): 222, 2018 12 22.
Article in English | MEDLINE | ID: mdl-30579332

ABSTRACT

BACKGROUND: Appreciable evidence suggest that dysbiosis in microbiota, reflected in gut microbial imbalance plays a key role in the pathogenesis of neuropsychiatric disorders including depression and inflammatory diseases. Recently, the antidepressant properties of ketamine have gained prominence due to its fast and long lasting effects. Additional uses for ketamine in inflammatory disorders such as irritable bowel syndrome have been suggested. However, ketamine's exact mechanism of action and potential effects on microbiome is not known. Here, we examined the effects of low dose ketamine, known to induce antidepressant effects, on stool microbiome profile in adult male Wistar rats. Animals (5/group) were injected intraperitoneally with ketamine (2.5 mg/kg) or saline, daily for 7 days and sacrificed on day 8 when intestinal stools were collected and stored at - 80 °C. DNA was extracted from the samples and the 16 S rRNA gene-based microbiota analysis was performed using 16S Metagenomics application. RESULTS: At genus-level, ketamine strikingly amplified Lactobacillus, Turicibacter and Sarcina by 3.3, 26 and 42 fold, respectively. Conversely, opportunistic pathogens Mucispirillum and Ruminococcus were reduced by approximately 2.6 and 26 fold, respectively, in ketamine group. Low levels of Lactobacillus and Turicibacter are associated with various disorders including depression and administration of certain species of Lactobacillus ameliorates depressive-like behavior in animal models. Hence, some of the antidepressant effects of ketamine might be mediated through its interaction with these gut bacteria. Additionally, high level of Ruminococcus is positively associated with the severity of irritable bowel syndrome (IBS), and some species of Mucispirillum have been associated with intestinal inflammation. Indirect evidence of anti-inflammatory role of Sarcina has been documented. Hence, some of the anti-inflammatory effects of ketamine and its usefulness in specific inflammatory diseases including IBS may be mediated through its interaction with these latter bacteria. CONCLUSION: Our data suggest that at least some of the antidepressant and anti-inflammatory effects of daily ketamine treatment for 7 days may be mediated via its interaction with specific gut bacteria. These findings further validate the usefulness of microbiome as a target for therapeutic intervention and call for more detailed investigation of microbiome interaction with central mediators of mood and/or inflammatory disorders.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/pharmacology , Bacteria/drug effects , Gastrointestinal Microbiome/drug effects , Ketamine/pharmacology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Feces/microbiology , Humans , Intestines/microbiology , Male , Rats , Rats, Wistar
14.
Article in English | MEDLINE | ID: mdl-30257440

ABSTRACT

Drug addiction affects a large extent of young people and disadvantaged populations. Drugs of abuse impede brain circuits or affect the functionality of brain circuits and interfere with bodily functions. Cannabinoids (Δ9-tetrahydrocannabinol) form key constituents of marijuana derived from the cannabis plant. Marijuana is a frequently used illegal drug in the USA. Here, we review the effects of cannabinoids at the epigenetic level and the potential role of these epigenetic effects in health and disease. Epigenetics is the study of alterations in gene expression that are transmitted across generations and take place without an alteration in DNA sequence, but are due to modulation of chromatin associated factors by environmental effects. Epigenetics is now known to offer an extra mechanism of control over transcription and how genes are expressed. Insights from research at the genetic and epigenetic level potentially provide venues that allow the translation of the biology of abused drugs to new means of how to treat marijuana substance use disorder or other addictions using pharmacotherapeutic tools.


Subject(s)
Cannabinoids/toxicity , Cannabis/chemistry , Epigenesis, Genetic/drug effects , Illicit Drugs/toxicity , Cannabis/toxicity , Gene Expression/drug effects , Humans , Marijuana Abuse/therapy , Substance-Related Disorders/therapy
15.
Int J Genomics ; 2018: 8929057, 2018.
Article in English | MEDLINE | ID: mdl-30148158

ABSTRACT

Commonly used pharmaceutical drugs might alter the epigenetic state of cells, leading to varying degrees of long-term repercussions to human health. To test this hypothesis, we cultured HEK-293 cells in the presence of 50 µM citalopram, a common antidepressant, for 30 days and performed whole-genome DNA methylation analysis using the NimbleGen Human DNA Methylation 3x720K Promoter Plus CpG Island Array. A total of 626 gene promoters, out of a total of 25,437 queried genes on the array (2.46%), showed significant differential methylation (p < 0.01); among these, 272 were hypomethylated and 354 were hypermethylated in treated versus control. Using Ingenuity Pathway Analysis, we found that the chief gene networks and signaling pathways that are differentially regulated include those involved in nervous system development and function and cellular growth and proliferation. Genes implicated in depression, as well as genetic networks involving nucleic acid metabolism, small molecule biochemistry, and cell cycle regulation were significantly modified. Involvement of upstream regulators such as BDNF, FSH, and NFκB was predicted based on differential methylation of their downstream targets. The study validates our hypothesis that pharmaceutical drugs can have off-target epigenetic effects and reveals affected networks and pathways. We view this study as a first step towards understanding the long-term epigenetic consequences of prescription drugs on human health.

16.
Neurotox Res ; 34(3): 757-762, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29804239

ABSTRACT

Ethanol (EtOH) is one of the most frequently abused drugs with heavy health, economic, and societal burdens. Although moderate to low EtOH may have some neuroprotective effects, heavy EtOH consumption associated with high blood alcohol level (BAL) can be quite detrimental. The brain is particularly vulnerable to the damaging effects of high BAL, leading to neuronal loss, cognitive, and behavioral deficits. Although the exact causes of these detriments are not fully elucidated, it is believed that damage to the cholinergic system is at least partially responsible for the cognitive impairment. Thus, high BAL may result in selective apoptotic damage to the cholinergic neurons. Donepezil (DON), a centrally acting, reversible and non-competitive acetylcholinesterase (AChE) inhibitor, approved for use in Alzheimer's disease (AD), may also attenuate EtOH-induced cognitive impairment. Cognitive effects of DON might be due to an anti-apoptotic activity as some AChE inhibitors have been shown to have this property. The aim of this study was to determine whether DON might protect against EtOH-induced toxicity and whether such protection might be apoptotically mediated. We exposed the human neuroblastoma-derived, SH-SY5Y cells to a relatively high concentration of EtOH (500 mM) for 24 h and evaluated the effects of two concentrations of DON (0.1 and 1.0 µM) on alcohol-induced toxicity and caspase-3, an apoptotic marker. We found a dose-dependent protection of DON against EtOH-induced toxicity as well as dose-dependent attenuation of EtOH-induced increases in caspase-3 levels. Thus, DON may inhibit apoptosis as well as alcohol-induced toxicity.


Subject(s)
Caspase 3/metabolism , Ethanol/toxicity , Indans/pharmacology , Neuroprotective Agents/pharmacology , Piperidines/pharmacology , Cell Line, Tumor , Central Nervous System Depressants , Donepezil , Dose-Response Relationship, Drug , Drug Synergism , Humans , Neuroblastoma/pathology
17.
Neurotox Res ; 34(4): 860-869, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29302849

ABSTRACT

The dose-dependent effects of alcohol, where the initial euphoric and stimulant effects initiated by the exposure to low ethanol levels can quickly lead to a deadly consequence are well established. Thus, high blood alcohol concentration (BAC), as seen in alcoholics, can cause significant damage to various organs. At low concentrations (e.g., 10 mg% or lower), however, beneficial effects of alcohol, particularly on cardiovascular function have been reported. Although, the latter assertion has been challenged by recent epidemiological studies, protective effects of low alcohol concentrations in vitro and in vivo relevant to the central nervous system (CNS) is well documented. In this review, the mechanism(s) leading to the detrimental effects of high BAC, as well as the beneficial effects of low BAC will be discussed. In addition, gender consideration is touched upon. Although further investigation is clearly warranted, it may be concluded that at least some of the beneficial outcomes of low BAC, including possible neuroprotection and antidepressant-like effects, may be due to elevation of the neurotropic factors and reduction of inflammatory mediators, whereas detrimental outcomes associated with high BAC, including neurotoxicity and depressive-like behavior may be due to reduction in neurotropic factors and elevation of inflammatory mediators. Furthermore, new research strategies are suggested.


Subject(s)
Central Nervous System Depressants/toxicity , Central Nervous System Depressants/therapeutic use , Ethanol/toxicity , Ethanol/therapeutic use , Alcohol Drinking/epidemiology , Animals , Blood Alcohol Content , Humans , Neuroprotection/drug effects
18.
Cell Death Discov ; 3: 17022, 2017.
Article in English | MEDLINE | ID: mdl-28580171

ABSTRACT

A subset of patients with oral squamous cell carcinoma (OSCC), the most common subtype of head and neck squamous cell carcinoma (HNSCC), harbor dysplastic lesions (often visually identified as leukoplakia) prior to cancer diagnosis. Although evidence suggest that leukoplakia represents an initial step in the progression to cancer, signaling networks driving this progression are poorly understood. Here, we applied in silico Pathway Activation Network Decomposition Analysis (iPANDA), a new bioinformatics software suite for qualitative analysis of intracellular signaling pathway activation using transcriptomic data, to assess a network of molecular signaling in OSCC and pre-neoplastic oral lesions. In tumor samples, our analysis detected major conserved mitogenic and survival signaling pathways strongly associated with HNSCC, suggesting that some of the pathways identified by our algorithm, but not yet validated as HNSCC related, may be attractive targets for future research. While pathways activation landscape in the majority of leukoplakias was different from that seen in OSCC, a subset of pre-neoplastic lesions has demonstrated some degree of similarity to the signaling profile seen in tumors, including dysregulation of the cancer-driving pathways related to survival and apoptosis. These results suggest that dysregulation of these signaling networks may be the driving force behind the early stages of OSCC tumorigenesis. While future studies with larger leukoplakia data sets are warranted to further estimate the values of this approach for capturing signaling features that characterize relevant lesions that actually progress to cancers, our platform proposes a promising new approach for detecting cancer-promoting pathways and tailoring the right therapy to prevent tumorigenesis.

19.
Drug Alcohol Depend ; 175: 133-139, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28414989

ABSTRACT

INTRODUCTION: Although a role for alpha-2 adrenoceptors (alpha-2 ARs) in alcohol use disorder (AUD) and depression is suggested, very little information on a direct interaction between alcohol and these receptors is available. METHODS: In this study adult female Wistar and Wistar-Kyoto (WKY) rats, a putative animal model of depression, were exposed to alcohol vapor 3h daily for 10days (blood alcohol concentration ∼150mg%) followed by daily injection of 10mg/kg of imipramine (IMP, a selective norepinephrine NE/serotonin reuptake inhibitor) or nomifensine (NOMI, a selective NE/dopamine reuptake inhibitor). On day 11 animals were tested for open field locomotor activity (OFLA) and forced swim test (FST) and were sacrificed 2h later for measurement of alpha-2 ARs densities in the frontal cortex and hippocampus using [3H]RX 821002 as the specific ligand. RESULTS: Chronic alcohol treatment increased the immobility in the FST, without affecting OFLA in both Wistar and WKY rats, suggesting induction of depressive-like behavior in Wistar rats and an exacerbation of this behavior in WKY rats. Alcohol treatment also resulted in an increase in cortical but not hippocampal alpha-2 ARs densities in both Wistar and WKY rats. The behavioral effects of alcohol were completely blocked by IMP and NOMI and the neurochemical effects (increases in alpha-2 ARs) were significantly attenuated by both drugs in both strains. CONCLUSIONS: The results suggest a role for cortical alpha-2 ARs in alcohol withdrawal-induced depression and that selective subtype antagonists of these receptors may be of adjunct therapeutic potential in AUD-depression co-morbidity.


Subject(s)
Antidepressive Agents, Tricyclic/administration & dosage , Depression/drug therapy , Imipramine/administration & dosage , Receptors, Adrenergic, alpha-2/drug effects , Substance Withdrawal Syndrome/metabolism , Animals , Blood Alcohol Content , Depression/blood , Depression/chemically induced , Disease Models, Animal , Female , Hippocampus/drug effects , Rats , Rats, Inbred WKY , Rats, Wistar , Substance Withdrawal Syndrome/blood , Substance Withdrawal Syndrome/psychology , Swimming/psychology
20.
Article in English | MEDLINE | ID: mdl-28316635

ABSTRACT

Since time immemorial humans have utilized natural products and therapies for their healing properties. Even now, in the age of genomics and on the cusp of regenerative medicine, the use of complementary and alternative medicine (CAM) approaches represents a popular branch of health care. Furthermore, there is a trend towards a unified medical philosophy referred to as Integrative Medicine (IM) that represents the convergence of CAM and conventional medicine. The IM model not only considers the holistic perspective of the physiological components of the individual, but also includes psychological and mind-body aspects. Justification for and validation of such a whole-systems approach is in part dependent upon identification of the functional pathways governing healing, and new data is revealing relationships between therapies and biochemical effects that have long defied explanation. We review this data and propose a unifying theme: IM's ability to affect healing is due at least in part to epigenetic mechanisms. This hypothesis is based on a mounting body of evidence that demonstrates a correlation between the physical and mental effects of IM and modulation of gene expression and epigenetic state. Emphasis on mapping, deciphering, and optimizing these effects will facilitate therapeutic delivery and create further benefits.

SELECTION OF CITATIONS
SEARCH DETAIL