Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(12): 13872-13882, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559923

ABSTRACT

Recentstudies toward finding more efficient ruthenium metalloligands for photocatalysis applications have shown that the derivatives of the linear [Ru(dqp)2]2+ (dqp: 2,6-di(quinolin-8-yl)-pyridine) complexes hold significant promise due to their extended emission lifetime in the µs time scale while retaining comparable redox potential, extinction coefficients, and absorption profile in the visible region to [Ru(bpy)3]2+ (bpy: 2,2'-bipyridine) and [Ru(tpy)2]2+ (tpy: 2,2':6',2″-terpyridine) complexes. Nevertheless, its photostability in aqueous solution needs to be improved for its widespread use in photocatalysis. Carbon-based supports have arisen as potential solutions for improving photostability and photocatalytic activity, yet their effect greatly depends on the interaction of the metal complex with the support. Herein, we present a strategy for obtaining Ru-polypyridyl complexes covalently linked to aminated reduced graphene oxide (rGO) to generate novel materials with long-term photostability and increased photoactivity. Specifically, the hybrid Ru(dqp)@rGO system has shown excellent photostable behavior during 24 h of continual irradiation, with an enhancement of 10 and 15% of photocatalytic dye degradation in comparison with [Ru(dqp)2]2+ and Ru(tpy)@rGO, respectively, as well as remarkable recyclability. The presented strategy corroborates the potential of [Ru(dqp)2]2+ as an interesting photoactive molecule to produce more advantageous light-active materials by covalent attachment onto carbon-based supports.

2.
RSC Adv ; 14(14): 9913-9919, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38528923

ABSTRACT

Pigments extracted from ayrampo seeds of the Peruvian-native prickly pear (Opuntia soehrensii) were used in dye-sensitized solar cells with promising efficiencies. The performance of the solar cells was then improved via the addition of citric acid to stabilise the photosensitive dye, and an efficiency of 1.41% was achieved with current output remaining stable after 7 days. Upon testing in low-light conditions, the solar conversion efficiency of devices increased to 4%. This paper not only highlights the potential of natural sensitizers in DSSCs but also shows that simple extraction and gentle handling methods can contribute to the device performance.

3.
Soft Matter ; 19(43): 8386-8402, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37873806

ABSTRACT

We describe a simple coordination compound of Au(I) and 6-thioguanosine, [Au(6-tGH)2]Cl, that has a rich self-assembly chemistry. In aqueous solution, the discrete complex assembles into a supramolecular fibre and forms a luminescent hydrogel at concentrations above about 1 mM. Below this concentration, the macromolecular structure is a vesicle. Through appropriate control of the solvent polarity, the gel can be turned into a lamellar film or crystallised. The molecular structure of [Au(6-tGH)2]Cl was determined using single crystal X-ray diffraction, which showed bis-6-thioguanosine linearly coordinated through the thione moiety to a central Au(I) ion. In the vesicles, the photoluminescence spectrum shows a broad, weak band at 550 nm owing to aurophilic interactions. Co-operative self-assembly from vesicle to fibre is made possible through halogen hydrogen bonding interactions and the aurophilic interactions are lost, resulting in a strong photoluminescence band at 490 nm with vibronic structure typical of an intraligand transition. The vesicle-fibre transition is also revealed by a large increase of ellipticity in the circular dichroism spectrum with a prominent peak near 390 nm owing to the helical structure of the fibres. Atomic force microscopy shows that at the same time as fibres form, the sample gels. Imaging near the vesicle-fibre transition shows that the fibres form between vesicles and a mechanism for the transition based on vesicle collisions is proposed.

4.
J Pers Med ; 13(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37763152

ABSTRACT

Alzheimer's disease (AD) is the most common form of neurodegenerative disorder. The prodromal phase of AD is mild cognitive impairment (MCI). The capacity to predict the transitional phase from MCI to AD represents a challenge for the scientific community. The adoption of artificial intelligence (AI) is useful for diagnostic, predictive analysis starting from the clinical epidemiology of neurodegenerative disorders. We propose a Machine Learning Model (MLM) where the algorithms were trained on a set of neuropsychological, neurophysiological, and clinical data to predict the diagnosis of cognitive decline in both MCI and AD patients. METHODS: We built a dataset with clinical and neuropsychological data of 4848 patients, of which 2156 had a diagnosis of AD, and 2684 of MCI, for the Machine Learning Model, and 60 patients were enrolled for the test dataset. We trained an ML algorithm using RoboMate software based on the training dataset, and then calculated its accuracy using the test dataset. RESULTS: The Receiver Operating Characteristic (ROC) analysis revealed that diagnostic accuracy was 86%, with an appropriate cutoff value of 1.5; sensitivity was 72%; and specificity reached a value of 91% for clinical data prediction with MMSE. CONCLUSION: This method may support clinicians to provide a second opinion concerning high prognostic power in the progression of cognitive impairment. The MLM used in this study is based on big data that were confirmed in enrolled patients and given a credibility about the presence of determinant risk factors also supported by a cognitive test score.

5.
Heliyon ; 9(7): e17736, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449143

ABSTRACT

Biomass resulting from food production represents valuable material to recover different biomolecules. In our study, we used apple pomace to obtain pectin, which is traditionally extracted using mineral acids. Our hypothesis consisted of carrying out extractions with organic acids, assisted by ultrasound, by varying processing parameters including time, temperature, and type of acid. The analytical determinations of galacturonic acid content, methoxylation and esterification degree, ζ-potential and extraction yield were used as pectin quality indicators. Pectins extracted using treatment conditions with better performance were assessed biologically in vitro for their potential to be used in biomedical applications. Overall, the extracted pectin presented a galacturonic acid content, methoxylation and esterification degree ranged from 19.7 to 67%, 26.8-41.4% and 58-65.2% respectively, and were negatively charged (-24.1 to -13.2 mV). It was found that factors of time and temperature greatly influenced the response variables excepting the esterification degree, while the acid type influenced the ζ-potential, methoxylation and esterification degrees. Additionally, it was seen that the longer extraction time (50 min) and higher temperature (50 °C) exhibited the better extraction yield (∼10.9%). Finally, the selected pectin showed high cytocompatibility up to 500 µg/mL of concentration when seeded with Neonatal Normal Human Dermal Fibroblasts.

6.
Dalton Trans ; 52(17): 5545-5551, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37009664

ABSTRACT

An RNA-based coordination polymer is formed by the aqueous reaction of CuI ions with the thionucleoside enantiomer (-)6-thioguanosine, (6tGH). The resulting polymer, [CuI(µ3-S-thioG)]n1, has a one-dimensional structure based on a [Cu4-S4] core and undergoes extensive hierarchical self-assembly transforming from oligomeric chains → rod → cable → bundle through which a fibrous gel forms, that undergoes syneresis to form a self-supporting mass. The assembly involves the formation of helical cables/bundles and, in combination with the intrinsic photoemission of the polymer, results in the material exhibiting circularly polarised luminescence (CPL).

7.
Int J Mol Sci ; 23(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36076937

ABSTRACT

In this paper we describe the synthesis of a novel bichromophoric system in which an efficient photoinduced intercomponent energy transfer process is active. The dyad consists of one subunit of curcumin and one of BODIPY and is able to emit in the far-red region, offering a large Stokes shift, capable of limiting light scattering processes for applications in microscopy. The system has been encapsulated in MCM-41 nanoparticles with dimensions between 50 and 80 nm. Both the molecular dyad and individual subunits were tested with different cell lines to study their effective applicability in bioimaging. MCM-41 nanoparticles showed no reduction in cell viability, indicating their biocompatibility and bio-inertness and making them capable of delivering organic molecules even in aqueous-based formulations, avoiding the toxicity of organic solvents. Encapsulation in the porous silica structure directed the location of the bichromophoric system within cytoplasm, while the dyad alone stains the nucleus of the hFOB cell line.


Subject(s)
Curcumin , Nanoparticles , Boron Compounds/chemistry , Curcumin/pharmacology , Nanoparticles/chemistry , Silicon Dioxide
8.
Front Chem ; 10: 921112, 2022.
Article in English | MEDLINE | ID: mdl-35836675

ABSTRACT

This study presents the design and characterization of new monochromatic light-harvesting systems based on inorganic porous materials hybridized with organic dye molecules within their structure. A new fluorescent BOPHY dye was prepared, characterized optically and used as both reference and synthetic precursor for two alkoxysilane derivatives that were incorporated separately within a silica structure. The dyes, one bearing one alkoxysilane group and the other one two, were co-condensed with tetraethyl orthosilicate to form a hybrid organo-silica framework, where they are found at specific locations. The structure of the new materials was analysed by powder XRD and TEM, which confirmed the presence of the hexagonal pore arrangement typical of mesoporous MCM-41 silica particles. The steady-state and time-resolved analysis showed that the particles where the dyes are most dispersed within the framework retain the highest fluorescence quantum yield, up to 0.63, in the green-yellow region of the visible spectrum. On the other hand, increasing the content of BOPHY units in the solid matrix seem to favour non-radiative deactivation pathways and aggregation phenomena, which lower the efficiency of light emission. The materials also exhibit interesting properties, such as a dual excited-state decay and fluorescence anisotropy. The short fluorescence lifetime, about 2 ns, matches the typical singlet lifetime of BOPHY dyes, whereas the long component, up to 20 ns, is attributed to delayed fluorescence, which could take place via charge recombination. Optical anisotropy experiments revealed that all materials show polarised light emission to a significant extent and, for most samples, it was also possible to determine a polarisation transfer decay trace, from 400 to 800 ps This is ascribed to the occurrence of energy migration between neighbouring dye units within the silica structure.

9.
J Mater Chem C Mater ; 10(18): 7329-7335, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35706420

ABSTRACT

The aqueous equimolar reaction of Ag(i) ions with the thionucleoside enantiomer (-)6-thioguanosine, ((-)6tGH), yields a one-dimensional coordination polymer {Ag(-)tG} n , the self-assembly of which generates left-handed helical chains. The resulting helicity induces an enhanced chiro-optical response compared to the parent ligand. DFT calculations indicate that this enhancement is due to delocalisation of the excited state along the helical chains, with 7 units being required to converge the calculated CD spectra. At concentrations ≥15 mmol l-1 reactions form a sample-spanning hydrogel which shows self-repair capabilities with instantaneous recovery in which the dynamic reversibility of the coordination chains appears to play a role. The resulting gel exhibits circularly polarised luminescence (CPL) with a large dissymmetry factor of -0.07 ± 0.01 at 735 nm, a phenomenon not previously observed for this class of coordination polymer.

10.
Article in English | MEDLINE | ID: mdl-32695771

ABSTRACT

Nature provides biomaterials that tend to be effective to control both their adhesive and cohesive properties. A catecholamine motif found in the marine mussels, the mytilus edulis foot protein, can play adhesiveness and cohesiveness. Particularly, acidic pH drives catechol (Cat) to have adhesive function, resulting in surface coating, while basic pH allows to enhance its cohesive properties, resulting in the formation of hydrogels. In this work, we demonstrated the usefulness of Cat-conjugated chondroitin sulfate (CS) as a platform for mesenchymal stem cell culture, utilizing the adhesive property of CS-Cat as coating for different substrates and the cohesive properties as hydrogel for cells encapsulation. To prepare the CS-Cat biopolymer, dopamine (DP) was coupled to the CS by carbodiimide coupling reaction and the Cat content was determined by UV-Vis spectroscopy (4.8 ± 0.6%). To demonstrate the adhesive properties of the biopolymer, PLA, PCL, TiO2, and SiO2 substrates were immersed in CS-Cat solution (pH < 2). Following the coating, the surfaces became highly hydrophilic, exhibiting a contact angle less than 35°. Also, in the presence of an oxidizing agent at pH 8, CS-Cat solution immediately became a hydrogel, as shown by inverted-vial test. Finally, immortalized TERT human mesenchymal stem cells (Y201) confirmed the high cytocompatibility of the biopolymer. The CS-Cat coating significantly enabled the Y201 adhesion onto PLA substrates, while the prepared hydrogel demonstrated to be a suitable environment for the encapsulation of cells as suitable bioink for further bioprinting applications.

11.
RSC Adv ; 10(5): 2841-2845, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-35496131

ABSTRACT

The incorporation into rigid silica host structures leads successfully to a significant luminescence enhancement of two zinc(ii) dipyrrins, known to be weak emitters in solution. One of these complexes shows a fluorescence efficiency of 55% and prolonged photo-stability once entrapped in silica, demonstrating high potential for applications in energy conversion.

12.
Nanomaterials (Basel) ; 9(3)2019 Mar 03.
Article in English | MEDLINE | ID: mdl-30832432

ABSTRACT

Hybrid materials prepared by encapsulation of plasmonic nanoparticles in porous silica systems are of increasing interest due to their high chemical stability and applications in optics, catalysis and biological sensing. Particularly promising is the possibility of obtaining gold@silica nanoparticles (Au@SiO2 NPs) with Janus morphology, as the induced anisotropy can be further exploited to achieve selectivity and directionality in physical interactions and chemical reactivity. However, current methods to realise such systems rely on the use of complex procedures based on binary solvent mixtures and varying concentrations of precursors and reaction conditions, with reproducibility limited to specific Au@SiO2 NP types. Here, we report a simple one-pot protocol leading to controlled crystallinity, pore order, monodispersity, and position of gold nanoparticles (AuNPs) within mesoporous silica by the simple addition of a small amount of sodium silicate. Using a fully water-based strategy and constant content of synthetic precursors, cetyl trimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS), we prepared a series of four silica systems: (A) without added silicate, (B) with added silicate, (C) with AuNPs and without added silicate, and (D) with AuNPs and with added silicate. The obtained samples were characterised by transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), and UV-visible spectroscopy, and kinetic studies were carried out by monitoring the growth of the silica samples at different stages of the reaction: 1, 10, 15, 30 and 120 min. The analysis shows that the addition of sodium silicate in system B induces slower MCM-41 nanoparticle (MCM-41 NP) growth, with consequent higher crystallinity and better-defined hexagonal columnar porosity than those in system A. When the synthesis was carried out in the presence of CTAB-capped AuNPs, two different outcomes were obtained: without added silicate, isotropic mesoporous silica with AuNPs located at the centre and radial pore order (C), whereas the addition of silicate produced Janus-type Au@SiO2 NPs (D) in the form of MCM-41 and AuNPs positioned at the silica⁻water interface. Our method was nicely reproducible with gold nanospheres of different sizes (10, 30, and 68 nm diameter) and gold nanorods (55 × 19 nm), proving to be the simplest and most versatile method to date for the realisation of Janus-type systems based on MCM-41-coated plasmonic nanoparticles.

13.
Chemistry ; 24(46): 11992-11999, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-29969162

ABSTRACT

This study presents a new design of light-harvesting antenna materials using two dyes organised into mesoporous silica: an iridium(III) complex and a BODIPY-derived surfactant that undergo Förster resonance energy transfer (FRET), acting, respectively, as donor and acceptor. The chemical structure of each dye determines the position taken within the micellar templates used for the synthesis of the silica host, which maintains mesopore order as shown by TEM imaging. Steady-state and time-resolved UV-visible spectroscopy revealed that incorporation of the iridium complex into the silica shields it from oxygen-induced quenching and allows a degree of control over the donor-acceptor distance, yielding FRET efficiencies from 24 to 76 % and tuneable emission ranges. Such silica-based antennae show promising properties for the realisation of polychromatic sensitisers for photovoltaics and photocatalysis.

14.
Inorg Chem ; 55(17): 8576-86, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27548299

ABSTRACT

Lead(II) acetate [Pb(Ac)2, where Ac = acetate group (CH3-COO(-))2] is a very common salt with many and varied uses throughout history. However, only lead(II) acetate trihydrate [Pb(Ac)2·3H2O] has been characterized to date. In this paper, two enantiotropic polymorphs of the anhydrous salt, a novel hydrate [lead(II) acetate hemihydrate: Pb(Ac)2·(1)/2H2O], and two decomposition products [corresponding to two different basic lead(II) acetates: Pb4O(Ac)6 and Pb2O(Ac)2] are reported, with their structures being solved for the first time. The compounds present a variety of molecular arrangements, being 2D or 1D coordination polymers. A thorough thermal analysis, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), was also carried out to study the behavior and thermal data of the salt and its decomposition process, in inert and oxygenated atmospheres, identifying the phases and byproducts that appear. The complex thermal behavior of lead(II) acetate is now solved, finding the existence of another hydrate, two anhydrous enantiotropic polymorphs, and some byproducts. Moreover, some of them are phosphorescent at room temperature. The compounds were studied by TGA, DSC, X-ray diffraction, and UV-vis spectroscopy.

17.
Chemistry ; 20(35): 10921-5, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25116185

ABSTRACT

Organically modified mesoporous silica nanoparticles (MSNs) containing rose bengal (RB), a xanthene dye, were successfully synthesized. RB-modified MSNs have shown a relevant photostability and a high efficiency in the photoproduction and delivery of singlet oxygen ((1)O2), which is particularly promising for photodynamic therapy (PDT) applications. In vitro tests have evidenced that RB-MSNs are able to reduce cell proliferation in one of the most aggressive skin cancer types (SK-MEL-28) after green-light irradiation.


Subject(s)
Nanoparticles/chemistry , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Rose Bengal/chemistry , Animals , Cell Proliferation/drug effects , Cells, Cultured , Humans , Models, Molecular , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/pharmacology , Surface Properties
18.
Chempluschem ; 79(1): 45-57, 2014 Jan.
Article in English | MEDLINE | ID: mdl-31986753

ABSTRACT

A series of iridium(III) compounds have been used as stopper molecules at the pore openings of zeolite L and act as effective donor units for transferring excitation energy to dye molecules entrapped within the zeolite channels. The synthesis and photophysical characterization of the new iridium(III) complexes are described, along with Förster resonance energy-transfer experiments. Transfer efficiencies for the studied systems are discussed on the basis of the role played by the localization of the donor excited state and the acceptor distribution in the channels. Because iridium(III) complexes can also be electrically excited, the electroluminescent behavior of donor-acceptor zeolite systems can be explored, by embedding them into a polymeric active layer and constructing light-emitting devices (LEDs). Novel hybrid LEDs can be fabricated with emission from the dyes entrapped into the zeolites and sensitized by the electro-responsive iridium(III) complex.

19.
Chemistry ; 18(48): 15310-5, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23055456

ABSTRACT

A new hybrid photostable donor-acceptor mesoporous SBA-15 silica system was designed and prepared. It consists of an encapsulated donor, the Super Yellow (SY) polymer, which transfers the photoexcitation energy directly to an acceptor dye that is linked outside the framework. The obtained composite material was characterized by X-ray diffraction, nitrogen-physisorption porosimetry, diffuse-reflectance (DR)-UV/Vis spectroscopy and photoluminescence, space- and time-resolved confocal microscopy. The physico-chemical analyses showed that the system behaves as an efficient Förster resonance energy transfer (FRET) pair, and high photoluminescence was observed from the acceptor. The presented photonic antenna is the first example of dye sensitization by polymer-loaded mesoporous silica and represents a step forward in the search for new efficient and stable materials with opto-electronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...