Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
World J Gastrointest Surg ; 16(3): 842-859, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38577085

ABSTRACT

BACKGROUND: Long non-coding RNAs (LncRNAs) have been found to be a potential prognostic factor for cancers, including hepatocellular carcinoma (HCC). Some LncRNAs have been confirmed as potential indicators to quantify genomic instability (GI). Nevertheless, GI-LncRNAs remain largely unexplored. This study established a GI-derived LncRNA signature (GILncSig) that can predict the prognosis of HCC patients. AIM: To establish a GILncSig that can predict the prognosis of HCC patients. METHODS: Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles. The GI-LncRNAs were then analyzed for functional enrichment. The GILncSig was established in the training set by Cox regression analysis, and its predictive ability was verified in the testing set and TCGA set. In addition, we explored the effects of the GILncSig and TP53 on prognosis. RESULTS: A total of 88 GI-LncRNAs were found, and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI. The GILncSig was constructed by 5 LncRNAs (miR210HG, AC016735.1, AC116351.1, AC010643.1, LUCAT1). In the training set, the prognosis of high-risk patients was significantly worse than that of low-risk patients, and similar results were verified in the testing set and TCGA set. Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor. Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve (0.773) was higher than the two LncRNA signatures published recently. Furthermore, the GILncSig may have a better predictive performance than TP53 mutation status alone. CONCLUSION: We established a GILncSig that can predict the prognosis of HCC patients, which will help to guide prognostic evaluation and treatment decisions.

2.
Org Lett ; 26(10): 2119-2123, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38436251

ABSTRACT

A green and highly efficient visible-light-induced radical cascade difluoroalkylation/cyclization reaction of N-cyanamide alkenes has been developed. A variety of CF2COR-containing quinazolinones have been obtained in high yields with cheap non-metallic 4CzIPN as the photocatalyst. This photocatalytic reaction provides rapid, facile, and practical access to valuable polycyclic quinazolinone, and it is amenable to the gram scale.

3.
Clin Transl Med ; 13(11): e1465, 2023 11.
Article in English | MEDLINE | ID: mdl-37997519

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer with major challenges in both prevention and therapy. Metformin, adenosine monophosphate-activated protein kinase (AMPK) activator, has been suggested to reduce the incidence of HCC when used for patients with diabetes in preclinical and clinical studies. However, the possible effects of metformin and their mechanisms of action in non-diabetic HCC have not been adequately investigated. METHODS: Fah-/-  mice were used to construct a liver-injury-induced non-diabetic HCC model for exploring hepatocarcinogenesis and therapeutic potential of metformin. Changes in relevant tumour and biochemical indicators were measured. Bulk and single-cell RNA-sequencing analyses were performed to validate the crucial role of proinflammatory/pro-tumour CD8+ T cells. In vitro and in vivo experiments were performed to confirm Cyp26a1-related antitumour mechanisms of metformin. RESULTS: RNA-sequencing analysis showed that chronic liver injury led to significant changes in AMPK-, glucose- and retinol metabolism-related pathways in Fah-/- mice. Metformin prevented the formation of non-diabetic HCC in Fah-/- mice with chronic liver injury. Cyp26a1 ddexpression in hepatocytes was significantly suppressed after metformin treatment. Moreover, downregulation of Cyp26a1 occurred in conjunction with increased levels of all-trans-retinoic acid (atRA), which is involved in the activation of metformin-suppressed hepatocarcinogenesis in Fah-/- mice. In contrast, both CD8+  T-cell infiltration and proinflammatory/pro-tumour cytokines in the liver were significantly upregulated in Fah-/- mice during chronic liver injury, which was notably reversed by either metformin or atRA treatment. Regarding mechanisms, metformin regulated the decrease in Cyp26a1 enzyme expression and increased atRA expression via the AMPK/STAT3/Gadd45ß/JNK/c-Jun pathway. CONCLUSIONS: Metformin inhibits non-diabetic HCC by upregulating atRA levels and downregulating CD8+ T cells. This is the first reporting that the traditional drug metformin regulates the metabolite atRA via the Cyp26a1-involved pathway. The present study provides a potential application of metformin and atRA in non-diabetic HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Metformin , Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Retinoic Acid 4-Hydroxylase/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Down-Regulation , AMP-Activated Protein Kinases/metabolism , CD8-Positive T-Lymphocytes/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism , Tretinoin/therapeutic use , Carcinogenesis , RNA
4.
World J Microbiol Biotechnol ; 39(12): 344, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37843698

ABSTRACT

Bifidobacterium is a major probiotic of intestinal gut flora and exerts many physiological activities, and it is widely applied in the fields of food and medicine. As an important part of Bifidobacterium, glycoside hydrolase plays a role in its physiological activity. With the continuous development and improvement of genetic engineering technology, research on this type of enzyme will play a crucial role in promoting the further development of Bifidobacterium in the field of probiotics. In this review, the preparation methods, enzymatic properties, and functions of glycoside hydrolase extracted from Bifidobacterium are described and summarized. The common method for preparing glycoside hydrolase derived from Bifidobacterium is heterologous expression in Escherichia coli BL21. The optimal pH range for these glycoside hydrolase enzymes is between 4.5 and 7.5; the optimal temperature is between 30 and 50 °C, which is close to the optimal growth condition of Bifidobacterium. Based on substrate specificity, these glycoside hydrolase could hydrolyze synthetic substrates and natural oligosaccharides, including a series of pNP artificial substrates, disaccharide, and trisaccharides, while they have little ability to hydrolyze polysaccharide substrates. This review will be expected to provide a basis for the development of Bifidobacterium as a probiotic element.


Subject(s)
Bifidobacterium , Glycoside Hydrolases , Bifidobacterium/genetics , Glycoside Hydrolases/metabolism , Disaccharides , Oligosaccharides/chemistry , Substrate Specificity
5.
Article in English | MEDLINE | ID: mdl-37848793

ABSTRACT

Economic incentive is thought a good intervention type that can encourage residents to do food waste sorting by many cities' government in China. However, there is a lack of long-term, large-scale study. So the business-led incentive scheme was studied by a case study in Nanjing, China, which focuses on food waste sorting. The results showed that the incentive can encourage at most an average 37% of residents to start and then continue to do food waste sorting regularly. Later, the incentive cannot encourage more even with many non-economic interventions. And most of these participating residents (31%) were encouraged at the first 12 months. The results also showed that house price had a negative relationship with the community sorting performance. The comparative study results showed that the community committee must be involved in the non-economic interventions to encourage more residents to take part; otherwise, the company will fail even after many attempts. So the government should apply the incentive policy by dialectical view in food waste sorting. And the incentive scheme should involve all the stakeholders to apply non-economic interventions to encourage more residents to do food waste sorting.

6.
Int Immunopharmacol ; 124(Pt B): 111040, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37839277

ABSTRACT

Autophagy regulates many cell function related to cancer, including cell proliferation, invasion and apoptosis. Therefore, we investigated the potential value of crosstalk between autophagy and apoptosis. The present study demonstrated that seven autophagy related genes were screened from the biological network of salidroside (Sal) acting on liver cancer. The GO analysis showed that these genes were mainly involved in apoptosis and autophagy. The KEGG analysis showed that these genes regulated the process of liver cancer through Th17 cell differentiation, PI3K-Akt signaling pathway and other pathways. Moreover, seven genes were positively correlated with tumor purity, number of B cells, number of CD4+ T cells, number of CD8+ T cells, number of macrophages, number of dendritic cells and number of neutrophils. The overall survival time of liver cancer patients in the high expression group of BIRC5, HSP90AB1 and MTOR was lower than that in the low expression group (P < 0.05), while the overall survival time of the liver cancer patients in the high expression group of DLC1 and FOXO1 was higher than that in the low expression group (P < 0.05). In the pan-cancer analysis, we also found that BIRC5, HSP90AB1, MTOR, and ITGA6 were highly expressed in various cancers, while DLC1, FOXO1, and FOS were low expressed in various cancers. In the molecule docking analysis, we found that FOS, HSP90AB1, and MTOR had the best binding ability. Notably, in the vitro validation experiments, Sal was confirmed to induce autophagy and apoptosis, inhibite invasion and metastasis of liver cancer cells through the PI3K/Akt/mTOR signaling pathway. Meanwhile, inhibition of autophagy by chloroquine diphosphate (CQ) promoted Sal-induced mitochondrial apoptosis via corresponding cell and animal experiments. We speculated that Sal-induced autophagy might be a protective mechanism, inhibition of autophagy could further promote the progression of liver cancer. It may provide important insight into the molecular mechanism of crosstalk between autophagy and apoptosis, and provide a new theoretical basis of Sal combined with autophagy inhibitors as a adjuvant chemotherapeutic strategy for human liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Liver Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Hepatocellular/metabolism , Phosphatidylinositol 3-Kinases/metabolism , CD8-Positive T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis/physiology , Autophagy/physiology , Cell Proliferation , GTPase-Activating Proteins , Tumor Suppressor Proteins
7.
J Fungi (Basel) ; 9(8)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37623633

ABSTRACT

Species of Amanita sect. Vaginatae (Fr.) Quél. are challenging to delimitate due to the morphological similarity or morphostasis among different taxa. In this study, a multi-locus (nuc rDNA region encompassing the internal transcribed spacers 1 and 2 with the 5.8S rDNA, the D1-D3 domains of nuc 28S rDNA, partial sequences of translation elongation factor 1-a, and the second largest subunit of RNA polymerase II) phylogeny was employed to investigate the species diversity of the section in eastern China. Sixteen species were recognized, including four new species; namely, A. circulata, A. multicingulata, A. orientalis, and A. sinofulva. They were documented with illustrated descriptions, ecological evidence, and comparisons with similar species. A key to the species of the section from eastern China is provided.

8.
Front Med ; 17(3): 432-457, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37402953

ABSTRACT

The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.


Subject(s)
Liver Diseases , Liver , Humans , Liver/surgery , Hepatocytes/metabolism , Hepatocytes/transplantation , Stem Cells/metabolism , Liver Diseases/surgery
9.
Front Cell Dev Biol ; 11: 998666, 2023.
Article in English | MEDLINE | ID: mdl-36824368

ABSTRACT

Long-term in vitro culture of human mesenchymal stem cells (MSCs) leads to cell lifespan shortening and growth stagnation due to cell senescence. Here, using sequencing data generated in the public domain, we have established a specific regulatory network of "transcription factor (TF)-microRNA (miRNA)-Target" to provide key molecules for evaluating the passage-dependent replicative senescence of mesenchymal stem cells for the quality control and status evaluation of mesenchymal stem cells prepared by different procedures. Short time-series expression miner (STEM) analysis was performed on the RNA-seq and miRNA-seq databases of mesenchymal stem cells from various passages to reveal the dynamic passage-related changes of miRNAs and mRNAs. Potential miRNA targets were predicted using seven miRNA target prediction databases, including TargetScan, miRTarBase, miRDB, miRWalk, RNA22, RNAinter, and TargetMiner. Then use the TransmiR v2.0 database to obtain experimental-supported transcription factor for regulating the selected miRNA. More than ten sequencing data related to mesenchymal stem cells or mesenchymal stem cells reprogramming were used to validate key miRNAs and mRNAs. And gene set variation analysis (GSVA) was performed to calculate the passage-dependent signature. The results showed that during the passage of mesenchymal stem cells, a total of 29 miRNAs were gradually downregulated and 210 mRNA were gradually upregulated. Enrichment analysis showed that the 29 miRNAs acted as multipotent regulatory factors of stem cells and participated in a variety of signaling pathways, including TGF-beta, HIPPO and oxygen related pathways. 210 mRNAs were involved in cell senescence. According to the target prediction results, the targets of these key miRNAs and mRNAs intersect to form a regulatory network of "TF-miRNA-Target" related to replicative senescence of cultured mesenchymal stem cells, across 35 transcription factor, 7 miRNAs (has-mir-454-3p, has-mir-196b-5p, has-mir-130b-5p, has-mir-1271-5p, has-let-7i-5p, has-let-7a-5p, and has-let-7b-5p) and 7 predicted targets (PRUNE2, DIO2, CPA4, PRKAA2, DMD, DDAH1, and GATA6). This network was further validated by analyzing datasets from a variety of mesenchymal stem cells subculture and lineage reprogramming studies, as well as qPCR analysis of early passages mesenchymal stem cells versus mesenchymal stem cells with senescence morphologies (SA-ß-Gal+). The "TF-miRNA-Target" regulatory network constructed in this study reveals the functional mechanism of miRNAs in promoting the senescence of MSCs during in vitro expansion and provides indicators for monitoring the quality of functional mesenchymal stem cells during the preparation and clinical application.

10.
J Environ Sci (China) ; 124: 513-521, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182160

ABSTRACT

Over the past decade, the emission standards and fuel standards in Beijing have been upgraded twice, and the vehicle structure has been improved by accelerating the elimination of 2.95 million old vehicles. Through the formulation and implementation of these policies, the emissions of carbon monoxide (CO), volatile organic compounds (VOCs), nitrogen oxides (NOx), and fine particulate matter (PM2.5) in 2019 were 147.9, 25.3, 43.4, and 0.91 kton in Beijing, respectively. The emission factor method was adopted to better understand the emissions characteristics of primary air pollutants from combustion engine vehicles and to improve pollution control. In combination with the air quality improvement goals and the status of social and economic development during the 14th Five-Year Plan period in Beijing, different vehicle pollution control scenarios were established, and emissions reductions were projected. The results show that the emissions of four air pollutants (CO, VOCs, NOx, and PM2.5) from vehicles in Beijing decreased by an average of 68% in 2019, compared to their levels in 2009. The contribution of NOx emissions from diesel vehicles increased from 35% in 2009 to 56% in 2019, which indicated that clean and energy-saving diesel vehicle fleets should be further improved. Electric vehicle adoption could be an important measure to reduce pollutant emissions. With the further upgrading of vehicle structure and the adoption of electric vehicles, it is expected that the total emissions of the four vehicle pollutants can be reduced by 20%-41% by the end of the 14th Five-Year Plan period.


Subject(s)
Air Pollutants , Air Pollution , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution/analysis , Beijing , Carbon Monoxide/analysis , China , Environmental Monitoring , Nitrogen Oxides/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
11.
Materials (Basel) ; 17(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38204002

ABSTRACT

Herein, the toughening mechanism and effects of 3-(aminopropyl)triethoxysilane (3-APTES) intercalation in calcium-silicate-hydrate (CSH) structures were investigated through molecular dynamics simulations. CSH established a model using 11 Å-tobermorite to simulate the tensile properties, toughness, adsorption energy, average orientation displacement and radial distribution function of 3-APTES intercalation at different Ca/Si ratios under conditions of a CVFF force field, an NVT system, and 298 K temperature. Simulation results demonstrate that 3-APTES alters the fracture process of CSH and effectively enhances its tensile properties and toughness. The presence of 3-APTES molecules increases the energy required to destroy CSH, thereby increasing the adsorption energy of CSH crystals. Furthermore, 3-APTES molecules effectively increase the atom density within the CSH structure. As the Ca/Si ratio increases, Ca-O bond formation is enhanced, with noticeable aggregation occurring because of modification by 3-APTES within the CSH structure. This study found that 3-APTES organic compounds can effectively improve the tensile, toughness, adsorption and other properties of the CSH structure, and further improve the microstructure of CSH.

12.
Front Genet ; 13: 1045145, 2022.
Article in English | MEDLINE | ID: mdl-36457741

ABSTRACT

Purpose: To describe the phenotype and genotype of a patient with autosomal recessive bestrophinopathy (ARB) over a 13-year follow-up period. Methods: The phenotype of the subject was described after a complete ophthalmological examination, which included fundus photography, optical coherence tomography (OCT), fundus autofluorescence, fluorescein angiography (FA), indocyanine green angiography (ICGA), electroretinogram (EOG), electroretinography (ERG), and multifocal electroretinogram (mfERG). Genetic analyses were carried out by screening the variations via whole-exome sequencing. Results: This patient presented with retinoschisis and cystic changes when he was 7 years old and was diagnosed with X-linked retinoschisis. In the 13th year after the first presentation, enlarged macular cysts with retinoschisis, macular neovascularization (MNV), and subretinal fluid were displayed on OCT. Autofluorescence showed hyperfluorescence corresponding to the area of retinal pigment epithelium (RPE) change. EOG showed no light peak, and the Arden ratio was less than 2.0. Whole-exome sequencing revealed compound heterozygous sequence variations (p. [Arg47Leu; Trp287*]) in the coding sequence of the BEST1 allele inherited from his parents. Thus, a diagnosis of ARB combined with secondary MNV was made. Conclusion: Patients with compound heterozygous BEST1 mutations developed ARB, which could show significant retinoschisis at a young age. Genetic analyses, autofluorescence, and EOG are essential to diagnose ARB correctly in consequence of considerable phenotypic variations.

13.
J Clin Lab Anal ; 36(12): e24765, 2022 12.
Article in English | MEDLINE | ID: mdl-36397297

ABSTRACT

BACKGROUND: Langerhans cell histiocytosis (LCH) is characterized by unifocal, multifocal single-system, or multi-system disease that occurs in all age groups, while it primarily attacks pediatric patients. Solitary gastrointestinal (GI) LCH in adults is exceedingly rare, so we aimed to investigate GI LCH in adults with unifocal single-system involvement and clarified the clinicopathologic characteristics of this disease. METHODS: Two cases of solitary GI LCH in adults were presented, and the clinicopathologic features of this diagnosis in the literature were reviewed. RESULTS: The main diagnostic feature of LCH is the morphologic identification of the characteristic Langerhans cells with prominent nuclear grooves and abundant eosinophilic cytoplasm, accompanied by a variable number of lymphocytes, eosinophils, and plasma cells. The distinctive cells expressed S100, CD1a, and langerin (CD207) on immunohistochemistry. BRAF V600E mutations were detected in the two patients. CONCLUSIONS: Gastrointestinal Langerhans cell histiocytosis in adults with unifocal, single-system involvement is extremely rare. Most patients were asymptomatic and usually a small solitary polyp in GI tract can be observed under routine endoscopy. Although the overall prognosis of unifocal single-system LCH is favorable, long-term follow-up is still necessary to rule out systemic disease.


Subject(s)
Histiocytosis, Langerhans-Cell , Child , Adult , Humans , Histiocytosis, Langerhans-Cell/complications , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Langerhans-Cell/pathology , Gastrointestinal Tract/pathology , Prognosis , Immunohistochemistry , Eosinophils/pathology
14.
J Mech Behav Biomed Mater ; 136: 105496, 2022 12.
Article in English | MEDLINE | ID: mdl-36283297

ABSTRACT

Artificial nucleus pulposus (ANP) replacement as an alternative to the treatment of cervical spondylosis aims to relieve pain and restore the normal cervical motion. In this study, the PVA/PVP and PVA/Pectin composite hydrogels (CH)s with different concentrations were prepared by the freezing-thawing process, and their performances were tested. The effect of different concentrations on both kinds of PVA CHs were evaluated and analysed. The results demonstrated that both kinds of CHs had good swelling property (¿190%), compressive stress-strain characteristic response and stable performance, and they were not easy to degrade (¡9%). The elastic modulus of the PVA/PVP CH was close to that of nucleus pulposus prosthesis, and the weight loss ratio of the PVA/PVP CH was lower than that of PVA/Pectin CH under load condition. Further, the experimental results showed that the PVA/PVP CH with 15 wt% solute and 1 wt% PVP content had the best comprehensive performance, which may provide significant advantages for use in future clinical application in replacing nucleus pulposus.


Subject(s)
Hydrogels , Nucleus Pulposus , Polyvinyl Alcohol , Elastic Modulus , Pectins
15.
Biomolecules ; 12(10)2022 09 21.
Article in English | MEDLINE | ID: mdl-36291544

ABSTRACT

Salivary glucose is frequently utilized in diabetes mellitus (DM), and it might be proposed as a potential biomarker candidate for DM, as it is non-invasive and cost-effective and achieves adequate diagnostic performance for DM patients. However, salivary glucose levels may change under specific conditions. It is consequently essential to maintain a consistent strategy for measuring saliva, taking into account the possibility of external factors influencing salivary glucose levels. In this study, we analyzed salivary glucose levels under different handling conditions and donor-dependent factors, including age, interdiurnal variations, and collection and processing methods. A structured questionnaire was used to determine the symptoms and predisposing factors of DM. The glucose oxidase peroxidase method was used to estimate glucose levels in the blood and saliva of people in a fasting state. The aim of this study is to investigate the effect of such conditions on salivary glucose levels. We found that these extraneous variables should be taken into account in the future when salivary glucose is used as a predictive biomarker for DM.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/diagnosis , Glucose Oxidase , Case-Control Studies , Glucose , Biomarkers , Peroxidases
16.
Biomedicines ; 10(9)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36140321

ABSTRACT

BACKGROUND: Saliva cortisol is considered to be a biomarker of depression prediction. However, saliva collection methods can affect the saliva cortisol level. OBJECTIVE: This study aims to determine the ideal saliva collection method and explore the application value of saliva cortisol in depression prediction. METHODS: 30 depressed patients and 30 healthy controls were instructed to collect saliva samples in the morning with six collection methods. Simultaneous venous blood was collected. Enzyme-linked immunosorbent assay was used to determine the cortisol level. The 24-observerrated Hamilton depression rating scale (HAMD-24) was used to assess the severity of depression. RESULTS: The significant differences in saliva cortisol levels depend on the saliva collection methods. The level of unstimulated whole saliva cortisol was most correlated with blood (r = 0.91). The stimulated parotid saliva cortisol can better predict depression. The area under the curve was 0.89. In addition, the saliva cortisol level of the depression patients was significantly higher than the healthy controls. The correlation between the cortisol level and the HAMD-24 score was highly significant. The higher the saliva cortisol level, the higher the HAMD-24 score. CONCLUSIONS: All the above findings point to an exciting opportunity for non-invasive monitoring of cortisol through saliva.

17.
Article in English | MEDLINE | ID: mdl-36141981

ABSTRACT

Spinal maladies are among the most common causes of pain and disability worldwide. Imaging represents an important diagnostic procedure in spinal care. Imaging investigations can provide information and insights that are not visible through ordinary visual inspection. Multiscale in vivo interrogation has the potential to improve the assessment and monitoring of pathologies thanks to the convergence of imaging, artificial intelligence (AI), and radiomic techniques. AI is revolutionizing computer vision, autonomous driving, natural language processing, and speech recognition. These revolutionary technologies are already impacting radiology, diagnostics, and other fields, where automated solutions can increase precision and reproducibility. In the first section of this narrative review, we provide a brief explanation of the many approaches currently being developed, with a particular emphasis on those employed in spinal imaging studies. The previously documented uses of AI for challenges involving spinal imaging, including imaging appropriateness and protocoling, image acquisition and reconstruction, image presentation, image interpretation, and quantitative image analysis, are then detailed. Finally, the future applications of AI to imaging of the spine are discussed. AI has the potential to significantly affect every step in spinal imaging. AI can make images of the spine more useful to patients and doctors by improving image quality, imaging efficiency, and diagnostic accuracy.


Subject(s)
Artificial Intelligence , Radiology , Forecasting , Humans , Machine Learning , Reproducibility of Results
18.
Front Oncol ; 12: 762906, 2022.
Article in English | MEDLINE | ID: mdl-35912264

ABSTRACT

Objective: Axillary lymph node management is an important part of breast cancer surgery and the accuracy of preoperative imaging evaluation can provide adequate information to guide operation. Different molecular subtypes of breast cancer have distinct imaging characteristics. This article was aimed to evaluate the predictive ability of imaging methods in accessing the status of axillary lymph node in different molecular subtypes. Methods: A total of 2,340 patients diagnosed with primary invasive breast cancer after breast surgery from 2013 to 2018 in Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University were included in the study. We collected lymph node assessment results from mammography, ultrasounds, and MRIs, performed receiver operating characteristic (ROC) analysis, and calculated the sensitivity and specificity of each test. The C-statistic among different imaging models were compared in different molecular subtypes to access the predictive abilities of these imaging models in evaluating the lymph node metastasis. Results: In Her-2 + patients, the C-statistic of ultrasound was better than that of MRI (0.6883 vs. 0.5935, p=0.0003). The combination of ultrasound and MRI did not raise the predictability compared to ultrasound alone (p=0.492). In ER/PR+HER2- patients, the C-statistic of ultrasound was similar with that of MRI (0.7489 vs. 0.7650, p=0.5619). Ultrasound+MRI raised the prediction accuracy compared to ultrasound alone (p=0.0001). In ER/PR-HER2- patients, the C-statistics of ultrasound was similar with MRI (0.7432 vs. 0.7194, p=0.5579). Combining ultrasound and MRI showed no improvement in the prediction accuracy compared to ultrasound alone (p=0.0532). Conclusion: From a clinical perspective, for Her-2+ patients, ultrasound was the most recommended examination to assess the status of axillary lymph node metastasis. For ER/PR+HER2- patients, we suggested that the lymph node should be evaluated by ultrasound plus MRI. For ER/PR-Her2- patients, ultrasound or MRI were both optional examinations in lymph node assessment. Furthermore, more new technologies should be explored, especially for Her2+ patients, to further raise the prediction accuracy of lymph node assessment.

19.
Orthop Surg ; 14(9): 2339-2349, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35946442

ABSTRACT

OBJECTIVE: To investigate the biomechanics of transforaminal lumbar interbody fusion (TLIF) with interspinous process device (IPD) or pedicle screw fixation under both static and vibration conditions by the finite element (FE) method. METHOD: A validated FE model of the L1-5 lumbar spine was used in this study. This FE model derived from computed tomography images of a healthy female adult volunteer of appropriate age. Then the model was modified to simulate L3-4 TLIF. Four conditions were compared: (i) intact; (ii) TLIF combined with bilateral pedicle screw fixation (BPSF); (iii) TLIF combined with U-shaped IPD Coflex-F (CF); and (iv) TLIF combined with unilateral pedicle screw fixation (UPSF). The intact and surgical FE models were analyzed under static and vibration loading conditions respectively. For static loading conditions, four motion modes (flexion, extension, lateral bending, and axial rotation) were simulated. For vibration loading conditions, the dynamic responses of lumbar spine under sinusoidal vertical load were simulated. RESULT: Under static loading conditions, compared with intact case, BPSF decreased range of motion (ROM) by 92%, 95%, 89% and 92% in flexion, extension, lateral bending and axial rotation, respectively. While CF decreased ROM by 87%, 90%, 69% and 80%, and UPSF decreased ROM by 84%, 89%, 66% and 82%, respectively. Compared with CF, UPSF increased the endplate stress by 5%-8% in flexion, 7%-10% in extension, 2%-4% in lateral bending, and decreased the endplate stress by 16%-19% in axial rotation. Compared with CF, UPSF increased the cage stress by 9% in flexion, 10% in extension, and decreased the cage stress by 3% in lateral bending, and 13% in axial rotation. BPSF decreased the stress responses of endplates and cage compared with CF and UPSF. Compared BPSF, CF decreased the facet joint force (FJF) by 6%-13%, and UPSF decreased the FJF by 4%-12%. During vibration loading conditions, compared with BPSF, CF reduced maximum values of the FJF by 16%-32%, and vibration amplitudes by 22%-35%, while UPSF reduced maximum values by 20%-40%, and vibration amplitudes by 31%-45%. CONCLUSION: Compared with other surgical models, BPSF increased the stability of lumbar spine, and also showed advantages in cage stress and endplate stress. CF showed advantages in IDP and FJF especially during vertical vibration, which may lead to lower risk of adjacent segment degeneration. CF may be an effective alternative to pedicle screw fixation in TLIF procedures.


Subject(s)
Pedicle Screws , Spinal Fusion , Adult , Female , Humans , Biomechanical Phenomena/physiology , Finite Element Analysis , Lumbar Vertebrae/physiology , Lumbar Vertebrae/surgery , Range of Motion, Articular , Spinal Fusion/methods , Vibration
20.
Clin Biomech (Bristol, Avon) ; 98: 105738, 2022 08.
Article in English | MEDLINE | ID: mdl-35987169

ABSTRACT

BACKGROUND: Recently, more and more people suffer from low back pain triggered by lumbar degenerative disc disease. The mechanical factor is one of the most significant causes of disc degeneration. This study aims to explore the biomechanical responses of the intervertebral disc, and investigate the process of disc injury by the theory of continuum damage mechanics. METHODS: A finite element model of the L4-L5 lumbar spine was developed and validated. The model not only considered changes in permeability coefficient with strain, but also included physiological factors such as osmotic pressure. Three loading conditions were simulated: (A) static loads, (B) vibration loads, (C) injury process. FINDINGS: The simulation results revealed that the facet joints shared massive stresses of the intervertebral discs, and prevented excessive lumbar spine movement. However, their asymmetrical position may have led to degeneration. The von Mises stress and pore pressure of annulus fibrosus showed significantly different trends under static loads and vibration loads. The von Mises stress of nucleus pulposus was not sensitive to vibration loads, but its pore pressure was conspicuously influenced by vibration loads. The injury first appeared at the posterior centre, and then, it gradually expanded along the edge of the intervertebral disc. With an increase in the loading steps, the damage rate of the intervertebral disc increased logarithmically. INTERPRETATION: The variation in the biomechanical performance of the intervertebral disc could be attributed to the periodic movement of internal fluids. This study might be helpful for understanding the mechanism of intervertebral disc degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc Displacement , Intervertebral Disc , Biomechanical Phenomena , Finite Element Analysis , Humans , Intervertebral Disc/physiology , Lumbar Vertebrae/physiology , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...