Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 299(12): 105427, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926283

ABSTRACT

Phase separation compartmentalizes many cellular pathways. Given that the same interactions that drive phase separation mediate the formation of soluble complexes below the saturation concentration, the contribution of condensates versus complexes to function is sometimes unclear. Here, we characterized several new cancer-associated mutations of the tumor suppressor speckle-type POZ protein (SPOP), a substrate recognition subunit of the Cullin3-RING ubiquitin ligase. This pointed to a strategy for generating separation-of-function mutations. SPOP self-associates into linear oligomers and interacts with multivalent substrates, and this mediates the formation of condensates. These condensates bear the hallmarks of enzymatic ubiquitination activity. We characterized the effect of mutations in the dimerization domains of SPOP on its linear oligomerization, binding to its substrate DAXX, and phase separation with DAXX. We showed that the mutations reduce SPOP oligomerization and shift the size distribution of SPOP oligomers to smaller sizes. The mutations therefore reduce the binding affinity to DAXX but unexpectedly enhance the poly-ubiquitination activity of SPOP toward DAXX. Enhanced activity may be explained by enhanced phase separation of DAXX with the SPOP mutants. Our results provide a comparative assessment of the functional role of complexes versus condensates and support a model in which phase separation is an important factor in SPOP function. Our findings also suggest that tuning of linear SPOP self-association could be used by the cell to modulate activity and provide insights into the mechanisms underlying hypermorphic SPOP mutations. The characteristics of cancer-associated SPOP mutations suggest a route for designing separation-of-function mutations in other phase-separating systems.


Subject(s)
Neoplasms , Phase Separation , Humans , Neoplasms/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Animals
2.
Elife ; 122023 03 01.
Article in English | MEDLINE | ID: mdl-36856266

ABSTRACT

Speckle-type POZ protein (SPOP) is a substrate adaptor in the ubiquitin proteasome system, and plays important roles in cell-cycle control, development, and cancer pathogenesis. SPOP forms linear higher-order oligomers following an isodesmic self-association model. Oligomerization is essential for SPOP's multivalent interactions with substrates, which facilitate phase separation and localization to biomolecular condensates. Structural characterization of SPOP in its oligomeric state and in solution is, however, challenging due to the inherent conformational and compositional heterogeneity of the oligomeric species. Here, we develop an approach to simultaneously and self-consistently characterize the conformational ensemble and the distribution of oligomeric states of SPOP by combining small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. We build initial conformational ensembles of SPOP oligomers using coarse-grained molecular dynamics simulations, and use a Bayesian/maximum entropy approach to refine the ensembles, along with the distribution of oligomeric states, against a concentration series of SAXS experiments. Our results suggest that SPOP oligomers behave as rigid, helical structures in solution, and that a flexible linker region allows SPOP's substrate-binding domains to extend away from the core of the oligomers. Additionally, our results are in good agreement with previous characterization of the isodesmic self-association of SPOP. In the future, the approach presented here can be extended to other systems to simultaneously characterize structural heterogeneity and self-assembly.


Subject(s)
Molecular Dynamics Simulation , X-Ray Diffraction , Scattering, Small Angle , Bayes Theorem , X-Rays , Protein Conformation
3.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993550

ABSTRACT

Phase separation is a ubiquitous process that compartmentalizes many cellular pathways. Given that the same interactions that drive phase separation mediate the formation of complexes below the saturation concentration, the contribution of condensates vs complexes to function is not always clear. Here, we characterized several new cancer-associated mutations of the tumor suppressor Speckle-type POZ protein (SPOP), a substrate recognition subunit of the Cullin3-RING ubiquitin ligase (CRL3), which pointed to a strategy for generating separation-of-function mutations. SPOP self-associates into linear oligomers and interacts with multivalent substrates, and this mediates the formation of condensates. These condensates bear the hallmarks of enzymatic ubiquitination activity. We characterized the effect of mutations in the dimerization domains of SPOP on its linear oligomerization, binding to the substrate DAXX, and phase separation with DAXX. We showed that the mutations reduce SPOP oligomerization and shift the size distribution of SPOP oligomers to smaller sizes. The mutations therefore reduce the binding affinity to DAXX, but enhance the poly-ubiquitination activity of SPOP towards DAXX. This unexpectedly enhanced activity may be explained by enhanced phase separation of DAXX with the SPOP mutants. Our results provide a comparative assessment of the functional role of clusters versus condensates and support a model in which phase separation is an important factor in SPOP function. Our findings also suggest that tuning of linear SPOP self-association could be used by the cell to modulate its activity, and provide insights into the mechanisms underlying hypermorphic SPOP mutations. The characteristics of these cancer-associated SPOP mutations suggest a route for designing separation-of-function mutations in other phase-separating systems.

4.
Mol Cell ; 83(5): 731-745.e4, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36693379

ABSTRACT

The speckle-type POZ protein (SPOP) functions in the Cullin3-RING ubiquitin ligase (CRL3) as a receptor for the recognition of substrates involved in cell growth, survival, and signaling. SPOP mutations have been attributed to the development of many types of cancers, including prostate and endometrial cancers. Prostate cancer mutations localize in the substrate-binding site of the substrate recognition (MATH) domain and reduce or prevent binding. However, most endometrial cancer mutations are dispersed in seemingly inconspicuous solvent-exposed regions of SPOP, offering no clear basis for their cancer-causing and peculiar gain-of-function properties. Herein, we present the first structure of SPOP in its oligomeric form, uncovering several new interfaces important for SPOP self-assembly and normal function. Given that many previously unaccounted-for cancer mutations are localized in these newly identified interfaces, we uncover molecular mechanisms underlying dysregulation of SPOP function, with effects ranging from gross structural changes to enhanced self-association, and heightened stability and activity.


Subject(s)
Prostatic Neoplasms , Transcription Factors , Male , Humans , Ubiquitination , Transcription Factors/metabolism , Repressor Proteins/genetics , Prostatic Neoplasms/genetics , Mutation
5.
Sci Rep ; 12(1): 17647, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271099

ABSTRACT

Numerous studies have shown how periplasmic binding proteins (PBPs) bind substrates with exquisite specificity, even distinguishing between sugar epimers and anomers, or structurally similar ions. Yet, marked substrate promiscuity is also a feature encoded in some PBPs. Except for three sub-Ångström crystal structures, there are no reports of hydrogen atom positions in the remaining (> 1000) PBP structures. The previous X-ray crystal structure of the maltodextrin periplasmic-binding protein from Thermotoga maritima (tmMBP) complexed with oligosaccharide showed a large network of interconnected water molecules stretching from one end of the substrate binding pocket to the other. These water molecules are positioned to form multiple hydrogen bonds, as well as forming interactions between the protein and substrate. Here we present the neutron crystal structure of tmMBP to a resolution of 2.1 Å. This is the first neutron crystal structure from the PBP superfamily and here we unambiguously identify the nature and orientation of the hydrogen bonding and water-mediated interactions involved in stabilizing a tetrasaccharide in the binding site. More broadly, these results demonstrate the conserved intricate mechanisms that underlie substrate-specificity and affinity in PBPs.


Subject(s)
Periplasmic Binding Proteins , Periplasmic Binding Proteins/metabolism , Protein Conformation , Crystallography, X-Ray , Models, Molecular , Binding Sites , Hydrogen Bonding , Oligosaccharides/chemistry , Neutrons , Sugars , Water/metabolism , Hydrogen/metabolism , Protein Binding
6.
Mol Cell ; 81(12): 2504-2506, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34143968

ABSTRACT

A spectrum of cancers arises from chromosomal translocations that fuse receptor tyrosine kinase domains to oligomerization domains from unrelated proteins. Tulpule et al. (2021) demonstrate that fusion proteins with the ability to assemble higher-order cytoplasmic protein granules can activate RAS signaling in a lipid membrane-independent manner.


Subject(s)
Receptor Protein-Tyrosine Kinases , Signal Transduction , Carcinogenesis , Humans , Oncogenes/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Translocation, Genetic
7.
Nucleic Acids Res ; 49(5): 2931-2945, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33577679

ABSTRACT

Liquid-liquid phase separation underlies the membrane-less compartmentalization of cells. Intrinsically disordered low-complexity domains (LCDs) often mediate phase separation, but how their phase behavior is modulated by folded domains is incompletely understood. Here, we interrogate the interplay between folded and disordered domains of the RNA-binding protein hnRNPA1. The LCD of hnRNPA1 is sufficient for mediating phase separation in vitro. However, we show that the folded RRM domains and a folded solubility-tag modify the phase behavior, even in the absence of RNA. Notably, the presence of the folded domains reverses the salt dependence of the driving force for phase separation relative to the LCD alone. Small-angle X-ray scattering experiments and coarse-grained MD simulations show that the LCD interacts transiently with the RRMs and/or the solubility-tag in a salt-sensitive manner, providing a mechanistic explanation for the observed salt-dependent phase separation. These data point to two effects from the folded domains: (i) electrostatically-mediated interactions that compact hnRNPA1 and contribute to phase separation and (ii) increased solubility at higher ionic strengths mediated by the folded domains. The interplay between disordered and folded domains can modify the dependence of phase behavior on solution conditions and can obscure signatures of physicochemical interactions underlying phase separation.


Subject(s)
Heterogeneous Nuclear Ribonucleoprotein A1/chemistry , Intrinsically Disordered Proteins/chemistry , Models, Molecular , Protein Domains , Scattering, Small Angle , Sodium Chloride/chemistry , Solubility , X-Ray Diffraction
8.
Chembiochem ; 22(2): 288-297, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32706524

ABSTRACT

Few other elements play a more central role in biology than hydrogen. The interactions, bonding and movement of hydrogen atoms are central to biological catalysis, structure and function. Yet owing to the elusive nature of a single hydrogen atom few experimental and computational techniques can precisely determine its location. This is exemplified in short hydrogen bonds (SHBs) where the location of the hydrogen atom is indicative of the underlying strength of the bonds, which can vary from 1-5 kcal/mol in canonical hydrogen bonds, to an almost covalent nature in single-well hydrogen bonds. Owing to the often-times inferred position of hydrogen, the role of SHBs in biology has remained highly contested and debated. This has also led to discrepancies in computational, biochemical and structural studies of proteins thought to use SHBs in performing chemistry and stabilizing interactions. Herein, we discuss in detail two distinct examples, namely the conserved catalytic triad and the photoreceptor, photoactive yellow protein, where studies of these SHB-containing systems have permitted contextualization of the role these unique hydrogen bonds play in biology.


Subject(s)
Hydrogen/metabolism , Proteins/metabolism , Biocatalysis , Hydrogen/chemistry , Hydrogen Bonding , Proteins/chemistry
9.
Biochemistry ; 59(48): 4591-4600, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33231438

ABSTRACT

The selective targeting of protein-protein interactions remains a significant determinant for the proper modulation and regulation of cell apoptosis. Prototypic galectins such as human galectin-7 (GAL-7) are characterized by their ability to form homodimers that control the molecular fate of a cell by mediating subtle yet critical glycan-dependent interactions between pro- and anti-apoptotic molecular partners. Altering the structural architecture of GAL-7 can therefore result in resistance to apoptosis in various human cancer cells, further illustrating its importance in cell survival. In this study, we used a combination of biophysical and cellular assays to illustrate that binding of a water-soluble meso-tetraarylporphyrin molecule to GAL-7 induces protein oligomerization and modulation of GAL-7-induced apoptosis in human Jurkat T cells. Our results suggest that the integrity of the GAL-7 homodimer architecture is essential for its molecular function, in addition to providing an interesting porphyrin binding modulator for controlling apoptosis in mammalian cells.


Subject(s)
Galectins/chemistry , Galectins/metabolism , Mesoporphyrins/chemistry , Mesoporphyrins/metabolism , Apoptosis/drug effects , Binding Sites/drug effects , Galectins/pharmacology , Humans , In Vitro Techniques , Jurkat Cells , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Interaction Domains and Motifs/drug effects , Protein Multimerization/drug effects , Protein Structure, Quaternary/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Scattering, Small Angle , Solubility , X-Ray Diffraction
10.
Methods Enzymol ; 634: 153-175, 2020.
Article in English | MEDLINE | ID: mdl-32093831

ABSTRACT

Dynamic nuclear polarization (DNP) can provide a powerful means to amplify neutron diffraction from biological crystals by 10-100-fold, while simultaneously enhancing the visibility of hydrogen by an order of magnitude. Polarizing the neutron beam and aligning the proton spins in a polarized sample modulates the coherent and incoherent neutron scattering cross-sections of hydrogen, in ideal cases amplifying the coherent scattering by almost an order of magnitude and suppressing the incoherent background to zero. This chapter describes current efforts to develop and apply DNP techniques for spin polarized neutron protein crystallography, highlighting concepts, experimental design, labeling strategies and recent results, as well as considering new strategies for data collection and analysis that these techniques could enable.


Subject(s)
Hydrogen , Neutron Diffraction , Crystallography , Neutrons , Protons
11.
Nucleic Acids Res ; 48(1): 200-211, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31665475

ABSTRACT

Escherichia coli replication initiator protein DnaA binds ATP with high affinity but the amount of ATP required to initiate replication greatly exceeds the amount required for binding. Previously, we showed that ATP-DnaA, not ADP-DnaA, undergoes a conformational change at the higher nucleotide concentration, which allows DnaA oligomerization at the replication origin but the association state remains unclear. Here, we used Small Angle X-ray Scattering (SAXS) to investigate oligomerization of DnaA in solution. Whereas ADP-DnaA was predominantly monomeric, AMP-PNP-DnaA (a non-hydrolysable ATP-analog bound-DnaA) was oligomeric, primarily dimeric. Functional studies using DnaA mutants revealed that DnaA(H136Q) is defective in initiating replication in vivo. The mutant retains high-affinity ATP binding, but was defective in producing replication-competent initiation complexes. Docking of ATP on a structure of E. coli DnaA, modeled upon the crystallographic structure of Aquifex aeolicus DnaA, predicts a hydrogen bond between ATP and imidazole ring of His136, which is disrupted when Gln is present at position 136. SAXS performed on AMP-PNP-DnaA (H136Q) indicates that the protein has lost its ability to form oligomers. These results show the importance of high ATP in DnaA oligomerization and its dependence on the His136 residue.


Subject(s)
Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Bacterial Proteins/chemistry , DNA Replication , DNA, Bacterial/genetics , DNA-Binding Proteins/chemistry , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Adenylyl Imidodiphosphate/chemistry , Adenylyl Imidodiphosphate/metabolism , Aquifex , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Chromosomes, Bacterial/chemistry , Chromosomes, Bacterial/metabolism , Crystallography, X-Ray , DNA, Bacterial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dimerization , Escherichia coli/metabolism , Hydrogen Bonding , Molecular Docking Simulation , Mutation , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Replication Origin , Thermodynamics
12.
ACS Catal ; 10(6): 3548-3555, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-38250052

ABSTRACT

Nucleotidyl transfer is an archetypal enzyme reaction central to DNA replication and repair. Here we describe a variation of the nucleotidylation reaction termed "catch and release" that is used by an antibiotic modifying enzyme. The aminoglycoside nucleotidyl transferase 4' (ANT4') inactivates antibiotics such as kanamycin and neomycin through nucleotidylation within an active site that shares significant structural, and inferred underlying catalytic similarity, with human DNA polymerase beta. Here we follow the entire nucleotidyl transfer reaction coordinate of ANT4' covalently inactivating neomycin using X-ray crystallography. These studies show that although the underlying reaction mechanism is conserved with polymerases, a short 2.35 A hydrogen bond is initially formed to facilitate tight binding of the aminoglycoside substrate and is subsequently disrupted by the assembly of the catalytically active ternary complex. This enables the release of products post catalysis due to a lower free energy of the product state compared to the starting substrate complex. We propose that this "catch and release" mechanism of antibiotic turnover observed in ANT4' is a variation of nucleotidyl transfer that has been adapted for the inactivation of antibiotics.

13.
Elife ; 82019 12 19.
Article in English | MEDLINE | ID: mdl-31854299

ABSTRACT

The computational design of a symmetric protein homo-oligomer that binds a symmetry-matched small molecule larger than a metal ion has not yet been achieved. We used de novo protein design to create a homo-trimeric protein that binds the C3 symmetric small molecule drug amantadine with each protein monomer making identical interactions with each face of the small molecule. Solution NMR data show that the protein has regular three-fold symmetry and undergoes localized structural changes upon ligand binding. A high-resolution X-ray structure reveals a close overall match to the design model with the exception of water molecules in the amantadine binding site not included in the Rosetta design calculations, and a neutron structure provides experimental validation of the computationally designed hydrogen-bond networks. Exploration of approaches to generate a small molecule inducible homo-trimerization system based on the design highlight challenges that must be overcome to computationally design such systems.


Subject(s)
Amantadine/chemistry , Protein Engineering , Proteins/chemistry , Small Molecule Libraries/chemistry , Binding Sites/drug effects , Computational Chemistry , Computer Simulation , Crystallography, X-Ray , Humans , Hydrogen Bonding/drug effects , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Multimerization/drug effects , Proteins/antagonists & inhibitors
14.
FEBS J ; 286(20): 3946-3958, 2019 10.
Article in English | MEDLINE | ID: mdl-31495053

ABSTRACT

The dysregulation of ubiquitin-mediated proteasomal degradation has emerged as an important mechanism of pathogenesis in several cancers. The speckle-type POZ protein (SPOP) functions as a substrate adaptor for the cullin3-RING ubiquitin ligase and controls the cellular persistence of a diverse array of protein substrates in hormone signalling, epigenetic control and cell cycle regulation, to name a few. Mutations in SPOP and the resulting dysregulation of this proteostatic pathway play causative roles in the pathogenesis of prostate and endometrial cancers, whereas overexpression and mislocalization are associated with kidney cancer. Understanding the molecular mechanism of the normal function of SPOP as well as the cause of SPOP-mediated oncogenesis is thus critical for eventual therapeutic targeting of SPOP and other related pathways. Here, we will review SPOP structure, function and the molecular mechanism of how this function is achieved. We will then review how mutations and protein mislocalization contribute to cancer pathogenesis and will provide a perspective on how SPOP may be targeted therapeutically.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Animals , Humans , Proteostasis , Ubiquitination
15.
Angew Chem Int Ed Engl ; 58(45): 16260-16266, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31515870

ABSTRACT

The position, bonding and dynamics of hydrogen atoms in the catalytic centers of proteins are essential for catalysis. The role of short hydrogen bonds in catalysis has remained highly debated and led to establishment of several distinctive geometrical arrangements of hydrogen atoms vis-à-vis the heavier donor and acceptor counterparts, that is, low-barrier, single-well or short canonical hydrogen bonds. Here we demonstrate how the position of a hydrogen atom in the catalytic triad of an aminoglycoside inactivating enzyme leads to a thirty-fold increase in catalytic turnover. A low-barrier hydrogen bond is present in the enzyme active site for the substrates that are turned over the best, whereas a canonical hydrogen bond is found with the least preferred substrate. This is the first comparison of these hydrogen bonds involving an identical catalytic network, while directly demonstrating how active site electrostatics adapt to the electronic nature of substrates to tune catalysis.


Subject(s)
Acetyltransferases/metabolism , Aminoglycosides/metabolism , Anti-Bacterial Agents/metabolism , Acetyltransferases/chemistry , Aminoglycosides/chemistry , Anti-Bacterial Agents/chemistry , Binding Sites , Catalysis , Catalytic Domain , Crystallography, X-Ray , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Conformation , Static Electricity
16.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 3): 171-175, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30839291

ABSTRACT

The Fenna-Matthews-Olson protein from Prosthecochloris aestuarii (PaFMO) has been crystallized in a new form that is amenable to high-resolution X-ray and neutron analysis. The crystals belonged to space group H3, with unit-cell parameters a = b = 83.64, c = 294.78 Å, and diffracted X-rays to ∼1.7 Šresolution at room temperature. Large PaFMO crystals grown to volumes of 0.3-0.5 mm3 diffracted neutrons to 2.2 Šresolution on the MaNDi neutron diffractometer at the Spallation Neutron Source. The resolution of the neutron data will allow direct determination of the positions of H atoms in the structure, which are believed to be fundamentally important in tuning the individual excitation energies of bacteriochlorophylls in this archetypal photosynthetic antenna complex. This is one of the largest unit-cell systems yet studied using neutron diffraction, and will allow the first high-resolution neutron analysis of a photosynthetic antenna complex.


Subject(s)
Chlorobi/chemistry , Light-Harvesting Protein Complexes/chemistry , Neutron Diffraction/methods , Photosynthesis , X-Ray Diffraction/methods , Chlorobi/physiology , Protein Conformation
17.
J Med Chem ; 61(22): 10218-10227, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30347146

ABSTRACT

Aminoglycoside antibiotics are a large family of antibiotics that can be divided into two distinct classes on the basis of the substitution pattern of the central deoxystreptamine ring. Although aminoglycosides are chemically, structurally, and topologically diverse, some aminoglycoside-modifying enzymes (AGMEs) are able to inactivate as many as 15 aminoglycosides from the two main classes, the kanamycin- and neomycin-based antibiotics. Here, we present the crystal structure of a promiscuous AGME, aminoglycoside- N3-acetyltransferase-IIIb (AAC-IIIb), in the apo form, in binary drug (sisomicin, neomycin, and paromomycin) and coenzyme A (CoASH) complexes, and in the ternary neomycin-CoASH complex. These data provide a structural framework for interpretation of the thermodynamics of enzyme-ligand interactions and the role of solvent in the recognition of ligands. In combination with the recent structure of an AGME that does not have broad substrate specificity, these structures allow for the direct determination of how antibiotic promiscuity is encoded in some AGMEs.


Subject(s)
Acetyltransferases/metabolism , Acetyltransferases/chemistry , Amino Acid Sequence , Aminoglycosides/chemistry , Aminoglycosides/metabolism , Aminoglycosides/pharmacology , Binding Sites , Ligands , Models, Molecular , Protein Conformation , Solvents/chemistry , Substrate Specificity , Thermodynamics
18.
Biochemistry ; 57(40): 5864-5876, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30204415

ABSTRACT

The genome of the hyperthermophile Thermotoga maritima contains three isoforms of maltose binding protein (MBP) that are high-affinity receptors for di-, tri-, and tetrasaccharides. Two of these proteins (tmMBP1 and tmMBP2) share significant sequence identity, approximately 90%, while the third (tmMBP3) shares less than 40% identity. MBP from Escherichia coli (ecMBP) shares 35% sequence identity with the tmMBPs. This subset of MBP isoforms offers an interesting opportunity to investigate the mechanisms underlying the evolution of substrate specificity and affinity profiles in a genome where redundant MBP genes are present. In this study, the X-ray crystal structures of tmMBP1, tmMBP2, and tmMBP3 are reported in the absence and presence of oligosaccharides. tmMBP1 and tmMBP2 have binding pockets that are larger than that of tmMBP3, enabling them to bind to larger substrates, while tmMBP1 and tmMBP2 also undergo substrate-induced hinge bending motions (∼52°) that are larger than that of tmMBP3 (∼35°). Small-angle X-ray scattering was used to compare protein behavior in solution, and computer simulations provided insights into dynamics of these proteins. Comparing quantitative protein-substrate interactions and dynamical properties of tmMBPs with those of the promiscuous ecMBP and disaccharide selective Thermococcus litoralis MBP provides insights into the features that enable selective binding. Collectively, the results provide insights into how the structure and dynamics of tmMBP homologues enable them to differentiate between a myriad of chemical entities while maintaining their common fold.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Maltose-Binding Proteins/chemistry , Maltose/chemistry , Thermotoga maritima/chemistry , Binding Sites , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Maltose-Binding Proteins/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , Thermotoga maritima/genetics
19.
Biochemistry ; 57(29): 4263-4275, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29901984

ABSTRACT

Optimal enzyme activity depends on a number of factors, including structure and dynamics. The role of enzyme structure is well recognized; however, the linkage between protein dynamics and enzyme activity has given rise to a contentious debate. We have developed an approach that uses an aqueous mixture of organic solvent to control the functionally relevant enzyme dynamics (without changing the structure), which in turn modulates the enzyme activity. Using this approach, we predicted that the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) from Escherichia coli in aqueous mixtures of isopropanol (IPA) with water will decrease by ∼3 fold at 20% (v/v) IPA concentration. Stopped-flow kinetic measurements find that the pH-independent khydride rate decreases by 2.2 fold. X-ray crystallographic enzyme structures show no noticeable differences, while computational studies indicate that the transition state and electrostatic effects were identical for water and mixed solvent conditions; quasi-elastic neutron scattering studies show that the dynamical enzyme motions are suppressed. Our approach provides a unique avenue to modulating enzyme activity through changes in enzyme dynamics. Further it provides vital insights that show the altered motions of DHFR cause significant changes in the enzyme's ability to access its functionally relevant conformational substates, explaining the decreased khydride rate. This approach has important implications for obtaining fundamental insights into the role of rate-limiting dynamics in catalysis and as well as for enzyme engineering.


Subject(s)
2-Propanol/metabolism , Enzyme Activation/drug effects , Escherichia coli/enzymology , Solvents/metabolism , Tetrahydrofolate Dehydrogenase/metabolism , Crystallography, X-Ray/methods , Escherichia coli/chemistry , Escherichia coli/metabolism , Kinetics , Molecular Dynamics Simulation , Protein Conformation/drug effects , Static Electricity , Tetrahydrofolate Dehydrogenase/chemistry , Viscosity , Water/metabolism
20.
Sci Adv ; 4(4): eaas8667, 2018 04.
Article in English | MEDLINE | ID: mdl-29632894

ABSTRACT

One group of enzymes that confer resistance to aminoglycoside antibiotics through covalent modification belongs to the GCN5-related N-acetyltransferase (GNAT) superfamily. We show how a unique GNAT subfamily member uses a previously unidentified noncanonical catalytic triad, consisting of a glutamic acid, a histidine, and the antibiotic substrate itself, which acts as a nucleophile and attacks the acetyl donor molecule. Neutron diffraction studies allow for unambiguous identification of a low-barrier hydrogen bond, predicted in canonical catalytic triads to increase basicity of the histidine. This work highlights the role of this unique catalytic triad in mediating antibiotic resistance while providing new insights into the design of the next generation of aminoglycosides.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Hydrogen Bonding , Aminoglycosides/chemistry , Aminoglycosides/pharmacology , Catalysis , Crystallography, X-Ray , Drug Design , Models, Molecular , Molecular Conformation , Neutrons , Structure-Activity Relationship , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL