Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
J Community Genet ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38730191

Up to 25% of pediatric cataract cases are inherited. There is sparse information in the literature regarding the cost of whole-exome sequencing (WES) for suspected hereditary pediatric cataracts. Molecular diagnosis of suspected hereditary pediatric cataracts is important for comprehensive genetic counseling. We performed a partial economic evaluation with a mixed costing analysis, using reimbursement data and microcosting approach with a bottom-up technique to estimate the cost of using WES for genetic diagnosis of suspected hereditary pediatric cataracts from the perspective of the Brazilian governmental health care system. One hundred and ten participants from twenty-nine families in Rio de Janeiro (RJ) were included. Costs of consumables, staff and equipment were calculated. Two scenarios were created: (1) The reference scenario included patients from RJ with suspected hereditary pediatric cataracts plus two family members. (2) The alternative scenario considered other genetic diseases, resulting in 5,280 exams per month. Sensitivity analysis was also performed. In the reference scenario, the total cost per exam was 700.09 United States dollars (USD), and in the alternative scenario, the total cost was 559.23 USD. The cost of WES alone was 527.85 USD in the reference scenario and 386.98 USD in the alternative scenario. Sensitivity analysis revealed that the largest costs were associated with consumables in both scenarios. Economic evaluations can help inform policy decisions, especially in middle-income countries such as Brazil.

2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article En | MEDLINE | ID: mdl-37569253

Hereditary hyperferritinemia-cataract syndrome (HHCS) is a rare, frequently misdiagnosed, autosomal dominant disease caused by mutations in the FTL gene. It causes bilateral pediatric cataract and hyperferritinemia without iron overload. The objective of this case series, describing three Brazilian families, is to increase awareness of HHCS, as well as to discuss possible phenotypic interactions with concurrent mutations in HFE, the gene associated with autosomal recessive inheritance hereditary hemochromatosis. Whole-exome sequencing was performed in eight individuals with HHCS from three different families, as well as one unaffected member from each family for trio analysis-a total of eleven individuals. Ophthalmological and clinical genetic evaluations were conducted. The likely pathogenic variant c.-157G>A in FTL was found in all affected individuals. They presented slowly progressing bilateral cataract symptoms before the age of 14, with a phenotype of varied bilateral diffuse opacities. Hyperferritinemia was present in all affected members, varying from 971 ng/mL to 4899 ng/mL. There were two affected individuals with one concurrent pathogenic variant in HFE (c.187C>G, p.H63D), who were also the ones with the highest values of serum ferritin in our cohort. Few publications describe individuals with pathogenic mutations in both FTL and HFE genes, and further studies are needed to assess possible phenotypic interactions causing higher values of hyperferritinemia.


Cataract , Hyperferritinemia , Iron Metabolism Disorders , Humans , Brazil , Pedigree , Iron Metabolism Disorders/pathology , Cataract/pathology , Mutation
3.
Genes (Basel) ; 12(10)2021 09 23.
Article En | MEDLINE | ID: mdl-34680870

Chronic Granulomatous Disease (CGD) is an inborn error of immunity characterized by impaired phagocyte function, recurrent fungal and bacterial infections and granuloma formation in multiple organs. Pediatric myelodysplastic Syndrome (MDS) is a rare hematological stem cell disease that leads to an ineffective hematopoiesis with variable risk of evolution to acute leukemias. Both disorders are rare and have distinct pathophysiologic mechanisms, with no known association. A 7-month-old boy presenting with recurrent infections and anemia at age 2 months underwent immunological, hematological and genetic investigation that culminated in the diagnosis of both CGD and MDS. Next generation sequencing was performed and identified a silent variant predicted as of Uncertain Significance, located in the splicing site at the end of exon 5 in CYBB. CYBB variants account for at least two thirds of CGD cases, but no previous descriptions of this variant were found in ClinVar or The Human Gene Mutation Database (HGMD) databases. We were able to demonstrate an exon 5 skipping on the proband's cDNA, which strongly suggests the disruption of the NADPH oxidase complex, abrogating the formation of reactive oxygen species from neutrophils. Moreover, erythroid cell lineage could be also affected by NADPH oxidase complex damages. Further investigation is needed to evaluate the potential effect of CYBB gene alterations in hematopoiesis, as well as in MDS and CGD association.


Granulomatous Disease, Chronic/genetics , Hematopoiesis/genetics , Myelodysplastic Syndromes/genetics , NADPH Oxidase 2/genetics , Exons/genetics , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/pathology , Humans , Infant , Male , Mutation/genetics , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/pathology , NADPH Oxidases/genetics , Neutrophils/metabolism , Neutrophils/pathology , Pediatrics , Phagocytes/metabolism , RNA Splicing/genetics , Reactive Oxygen Species/metabolism
4.
Genes (Basel) ; 12(7)2021 07 13.
Article En | MEDLINE | ID: mdl-34356085

Up to 25% of pediatric cataract cases are inherited, with half of the known mutant genes belonging to the crystallin family. Within these, crystallin beta B3 (CRYBB3) has the smallest number of reported variants. Clinical ophthalmological and genetic-dysmorphological evaluation were performed in three autosomal dominant family members with pediatric cataract and microphthalmia, as well as one unaffected family member. Peripheral blood was collected from all participating family members and next-generation sequencing was performed. Bioinformatics analysis revealed a novel missense variant c.467G>A/p.Gly156Glu in CRYBB3 in all family members with childhood cataract. This variant is classified as likely pathogenic by ACMG, and no previous descriptions of it were found in ClinVar, HGMD or Cat-Map. The only other mutation previously described in the fifth exon of CRYBB3 is a missense variant that causes a change in amino acid from the same 156th amino acid to arginine and has been associated with pediatric cataract and microphthalmia. To the best of our knowledge, this is the first time the c.467G>A/p.Gly156Glu variant is reported and the second time a mutation in CRYBB3 has been associated with microphthalmia.


Cataract/genetics , Microphthalmos/genetics , beta-Crystallin B Chain/genetics , Child, Preschool , Crystallins/genetics , Exons/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Mutation/genetics , Mutation, Missense/genetics , Pedigree , beta-Crystallin B Chain/metabolism
5.
PLoS Negl Trop Dis ; 15(6): e0009507, 2021 06.
Article En | MEDLINE | ID: mdl-34125832

Congenital Zika Syndrome (CZS) is a critical illness with a wide range of severity caused by Zika virus (ZIKV) infection during pregnancy. Life-threatening neurodevelopmental dysfunctions are among the most common phenotypes observed in affected newborns. Risk factors that contribute to susceptibility and response to ZIKV infection may be related to the virus itself, the environment, and maternal genetic background. Nevertheless, the newborn's genetic contribution to the critical illness is still not elucidated. Here, we aimed to identify possible genetic variants as well as relevant biological pathways that might be associated with CZS phenotypes. For this purpose, we performed a whole-exome sequencing in 40 children born to women with confirmed exposure to ZIKV during pregnancy. We investigated the occurrence of rare harmful single-nucleotide variants (SNVs) possibly associated with inborn errors in genes ontologically related to CZS phenotypes. Moreover, an exome-wide association analysis was also performed using a case-control design (29 CZS cases and 11 controls), for both common and rare variants. Five out of the 29 CZS patients harbored known pathogenic variants likely to contribute to mild to severe manifestations observed. Approximately, 30% of affected individuals carried at least one pathogenic or likely pathogenic SNV in genes candidates to play a role in CZS. Our common variant association analysis detected a suggestive protective effect of the rs2076469 in DISP3 gene (p-value: 1.39 x 10-5). The IL12RB2 gene (p-value: 2.18x10-11) also showed an unusual distribution of nonsynonymous rare SNVs in control samples. Finally, genes harboring harmful variants are involved in processes related to CZS phenotypes such as neurological development and immunity. Therefore, both rare and common variations may be likely to contribute as the underlying genetic cause of CZS susceptibility. The variations and pathways identified in this study may also have implications for the development of therapeutic strategies in the future.


Genetic Predisposition to Disease , Pregnancy Complications, Infectious/virology , Zika Virus Infection/congenital , Zika Virus Infection/genetics , Brazil , Case-Control Studies , Female , Humans , Infant, Newborn , Male , Polymorphism, Single Nucleotide , Pregnancy , Pregnancy Complications, Infectious/genetics , Exome Sequencing , Zika Virus/physiology
6.
Sci Signal ; 13(635)2020 06 09.
Article En | MEDLINE | ID: mdl-32518143

Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.


Brain , Collagen , Extracellular Matrix , Polymorphism, Single Nucleotide , Zika Virus Infection , Zika Virus , Brain/metabolism , Brain/pathology , Collagen/genetics , Collagen/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Female , Humans , Infant, Newborn , Male , Syndrome , Zika Virus Infection/congenital , Zika Virus Infection/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/pathology
7.
Sci Rep ; 10(1): 1378, 2020 Jan 28.
Article En | MEDLINE | ID: mdl-31992777

Previous work showed that the thymus can be infected by RNA viruses as HIV and HTLV-1. We thus hypothesized that the thymus might also be infected by the Zika virus (ZIKV). Herein we provide compelling evidence that ZIKV targets human thymic epithelial cells (TEC) in vivo and in vitro. ZIKV-infection enhances keratinization of TEC, with a decrease in proliferation and increase in cell death. Moreover, ZIKV modulates a high amount of coding RNAs with upregulation of genes related to cell adhesion and migration, as well as non-coding genes including miRNAs, circRNAs and lncRNAs. Moreover, we observed enhanced attachment of lymphoblastic T-cells to infected TEC, as well as virus transfer to those cells. Lastly, alterations in thymuses from babies congenitally infected were seen, with the presence of viral envelope protein in TEC. Taken together, our data reveals that the thymus, particularly the thymic epithelium, is a target for the ZIKV with changes in the expression of molecules that are relevant for interactions with developing thymocytes.


Epithelial Cells , Thymocytes , Thymus Gland , Viral Tropism , Zika Virus Infection , Zika Virus/physiology , Animals , Chlorocebus aethiops , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/virology , Epithelium/metabolism , Epithelium/pathology , Epithelium/virology , Humans , Thymocytes/metabolism , Thymocytes/pathology , Thymocytes/virology , Thymus Gland/metabolism , Thymus Gland/pathology , Thymus Gland/virology , Vero Cells , Zika Virus Infection/metabolism , Zika Virus Infection/pathology
8.
Sci. Signal. ; 13(635): eaay6736, 2020.
Article En | SES-SP, SESSP-IBPROD, SES-SP | ID: but-ib17730

Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.

9.
Sci Signal, v. 13, n. 635, eaay6736, jun. 2020
Article En | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-3067

Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.

10.
BMC Infect Dis ; 19(1): 986, 2019 Nov 21.
Article En | MEDLINE | ID: mdl-31752731

BACKGROUND: Zika virus (ZIKV) infection gained public health concern after the 2015 outbreak in Brazil, when microcephaly rates increased in babies born from infected mothers. It was demonstrated that ZIKV causes a congenital Zika virus syndrome, including various alterations in the development of the central nervous system. Although the infection of cells from the nervous system has been well documented, less is known in respect of ZIKV ability to infect immune cells. Herein, we investigated if peripheral blood mononuclear cells (PBMCs), freshly-isolated from healthy donors, could be infected by ZIKV. METHODS: PBMCs from healthy donors were isolated and cultured in medium with ZIKV strain Rio-U1 (MOI = 0.1). Infection was analyzed by RT-qPCR and flow cytometry. RESULTS: We detected the ZIKV RNA in PBMCs from all donors by RT-qPCR analysis. The detection of viral antigens by flow cytometry revealed that PBMC from more than 50% the donors were infected by ZIKV, with CD3+CD4+ T cells, CD3-CD19+ B cells and CD3+CD8+ T cells being, respectively, the most frequently infected subpopulations, followed by CD14+ monocytes. Additionally, we observed high variability in PBMC infection rates among different donors, either by numbers or type infected cells. CONCLUSIONS: These findings raise the hypothesis that PBMCs can act as a reservoir of the virus, which may facilitate viral dissemination to different organs, including immune-privileged sites.


Leukocytes, Mononuclear/virology , Zika Virus Infection/virology , Zika Virus/isolation & purification , Antigens, CD19/genetics , Antigens, CD19/immunology , B-Lymphocytes/immunology , Brazil , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Humans , Leukocytes, Mononuclear/immunology , Monocytes/immunology , Monocytes/virology , Real-Time Polymerase Chain Reaction , Zika Virus/genetics , Zika Virus/physiology , Zika Virus Infection/diagnosis , Zika Virus Infection/genetics , Zika Virus Infection/immunology
...