Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Clin Cancer Res ; 30(4): 895-903, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38078899

ABSTRACT

PURPOSE: Detection of circulating tumor DNA (ctDNA) in patients who have completed treatment for early-stage breast cancer is associated with a high risk of relapse, yet the optimal assay for ctDNA detection is unknown. EXPERIMENTAL DESIGN: The cTRAK-TN clinical trial prospectively used tumor-informed digital PCR (dPCR) assays for ctDNA molecular residual disease (MRD) detection in early-stage triple-negative breast cancer. We compared tumor-informed dPCR assays with tumor-informed personalized multimutation sequencing assays in 141 patients from cTRAK-TN. RESULTS: MRD was first detected by personalized sequencing in 47.9% of patients, 0% first detected by dPCR, and 52.1% with both assays simultaneously (P < 0.001; Fisher exact test). The median lead time from ctDNA detection to relapse was 6.1 months with personalized sequencing and 3.9 months with dPCR (P = 0.004, mixed-effects Cox model). Detection of MRD at the first time point was associated with a shorter time to relapse compared with detection at subsequent time points (median lead time 4.2 vs. 7.1 months; P = 0.02). CONCLUSIONS: Personalized multimutation sequencing assays have potential clinically important improvements in clinical outcome in the early detection of MRD.


Subject(s)
Circulating Tumor DNA , Triple Negative Breast Neoplasms , Humans , Circulating Tumor DNA/genetics , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/genetics , Neoplasm Recurrence, Local/pathology , Recurrence , Biomarkers, Tumor/genetics , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics
2.
Cancer Discov ; 14(2): 274-289, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37982575

ABSTRACT

Fulvestrant is used to treat patients with hormone receptor-positive advanced breast cancer, but acquired resistance is poorly understood. PlasmaMATCH Cohort A (NCT03182634) investigated the activity of fulvestrant in patients with activating ESR1 mutations in circulating tumor DNA (ctDNA). Baseline ESR1 mutations Y537S are associated with poor outcomes and Y537C with good outcomes. Sequencing of baseline and EOT ctDNA samples (n = 69) revealed 3/69 (4%) patients acquired novel ESR1 F404 mutations (F404L, F404I, and F404V), in cis with activating mutations. In silico modeling revealed that ESR1 F404 contributes to fulvestrant binding to estrogen receptor-alpha (ERα) through a pi-stacking bond, with mutations disrupting this bond. In vitro analysis demonstrated that single F404L, E380Q, and D538G models were less sensitive to fulvestrant, whereas compound mutations D538G + F404L and E380Q + F404L were resistant. Several oral ERα degraders were active against compound mutant models. We have identified a resistance mechanism specific to fulvestrant that can be targeted by treatments in clinical development. SIGNIFICANCE: Novel F404 ESR1 mutations may be acquired to cause overt resistance to fulvestrant when combined with preexisting activating ESR1 mutations. Novel combinations of mutations in the ER ligand binding domain may cause drug-specific resistance, emphasizing the potential of similar drug-specific mutations to impact the efficacy of oral ER degraders in development. This article is featured in Selected Articles from This Issue, p. 201.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Circulating Tumor DNA/genetics , Mutation
3.
Cancers (Basel) ; 15(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36900180

ABSTRACT

BACKGROUND: The majority of locally advanced cervical cancers (LaCC) are causally related to HPV. We sought to investigate the utility of an ultra-sensitive HPV-DNA next generation sequencing (NGS) assay-panHPV-detect-in LaCC treated with chemoradiotherapy, as a marker of treatment response and persistent disease. METHOD: Serial blood samples were collected from 22 patients with LaCC before, during and after chemoradiation. The presence of circulating HPV-DNA was correlated with clinical and radiological outcomes. RESULTS: The panHPV-detect test demonstrated a sensitivity and specificity of 88% (95% CI-70-99%) and 100% (95% CI-30-100%), respectively, and correctly identified the HPV-subtype (16, 18, 45, 58). After a median follow up of 16 months, and three relapses all had detectable cHPV-DNA at 3 months post-CRT despite complete response on imaging. Another four patients with radiological partial or equivocal response and undetectable cHPV-DNA at the 3-month time point did not go on to develop relapse. All patients with radiological CR and undetectable cHPV-DNA at 3-months remained disease free. CONCLUSIONS: These results demonstrate that the panHPV-detect test shows high sensitivity and specificity for detecting cHPV-DNA in plasma. The test has potential applications in assessment of the response to CRT and in monitoring for relapse, and these initial findings warrant validation in a larger cohort.

5.
Nat Commun ; 12(1): 2423, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893289

ABSTRACT

The genomics of advanced breast cancer (ABC) has been described through tumour tissue biopsy sequencing, although these approaches are limited by geographical and temporal heterogeneity. Here we use plasma circulating tumour DNA sequencing to interrogate the genomic profile of ABC in 800 patients in the plasmaMATCH trial. We demonstrate diverse subclonal resistance mutations, including enrichment of HER2 mutations in HER2 positive disease, co-occurring ESR1 and MAP kinase pathway mutations in HR + HER2- disease that associate with poor overall survival (p = 0.0092), and multiple PIK3CA mutations in HR + disease that associate with short progression free survival on fulvestrant (p = 0.0036). The fraction of cancer with a mutation, the clonal dominance of a mutation, varied between genes, and within hotspot mutations of ESR1 and PIK3CA. In ER-positive breast cancer subclonal mutations were enriched in an APOBEC mutational signature, with second hit PIK3CA mutations acquired subclonally and at sites characteristic of APOBEC mutagenesis. This study utilises circulating tumour DNA analysis in a large clinical trial to demonstrate the subclonal diversification of pre-treated advanced breast cancer, identifying distinct mutational processes in advanced ER-positive breast cancer, and novel therapeutic opportunities.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/therapy , Circulating Tumor DNA/genetics , Genomics/methods , Mutation , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Breast Neoplasms/blood , Class I Phosphatidylinositol 3-Kinases/genetics , Drug Resistance, Neoplasm/genetics , Female , Humans , Middle Aged , Progression-Free Survival , Receptor, ErbB-2/genetics , Receptors, Estrogen/genetics , Sequence Analysis, DNA
6.
J Natl Cancer Inst ; 113(3): 309-317, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32940689

ABSTRACT

BACKGROUND: There are no established molecular biomarkers for patients with breast cancer receiving combination endocrine and CDK4/6 inhibitor (CDK4/6i). We aimed to determine whether genomic markers in circulating tumor DNA (ctDNA) can identify patients at higher risk of early progression on fulvestrant therapy with or without palbociclib, a CDK4/6i. METHODS: PALOMA-3 was a phase III, multicenter, double-blind randomized controlled trial of palbociclib plus fulvestrant (n = 347) vs placebo plus fulvestrant (n = 174) in patients with endocrine-pretreated estrogen receptor-positive (ER+) breast cancer. Pretreatment plasma samples from 459 patients were analyzed for mutations in 17 genes, copy number in 14 genes, and circulating tumor fraction. Progression-free survival (PFS) was compared in patients with circulating tumor fraction above or below a prespecified cutoff of 10% and with or without a specific genomic alteration. All statistical tests were 2-sided. RESULTS: Patients with high ctDNA fraction had worse PFS on both palbociclib plus fulvestrant (hazard ratio [HR] = 1.62, 95% confidence interval [CI] = 1.17 to 2.24; P = .004) and placebo plus fulvestrant (HR = 1.77, 95% CI = 1.21 to 2.59; P = .004). In multivariable analysis, high-circulating tumor fraction was associated with worse PFS (HR = 1.20 per 10% increase in tumor fraction, 95% CI = 1.09 to 1.32; P < .001), as was TP53 mutation (HR = 1.84, 95% CI = 1.27 to 2.65; P = .001) and FGFR1 amplification (HR = 2.91, 95% CI = 1.61 to 5.25; P < .001). No interaction with treatment randomization was observed. CONCLUSIONS: Pretreatment ctDNA identified a group of high-risk patients with poor clinical outcome despite the addition of CDK4/6 inhibition. These patients might benefit from inclusion in future trials of escalating treatment, with therapies that may be active in these genomic contexts.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Circulating Tumor DNA/blood , Receptors, Estrogen/metabolism , Antineoplastic Agents, Hormonal/administration & dosage , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Breast Neoplasms/blood , Breast Neoplasms/metabolism , Circulating Tumor DNA/genetics , Clinical Trials, Phase III as Topic , Female , Fulvestrant/administration & dosage , Gene Dosage , Humans , Multicenter Studies as Topic , Mutation , Piperazines/administration & dosage , Progression-Free Survival , Protein Kinase Inhibitors/administration & dosage , Pyridines/administration & dosage , Randomized Controlled Trials as Topic
7.
Cancer Discov ; 11(1): 92-107, 2021 01.
Article in English | MEDLINE | ID: mdl-32958578

ABSTRACT

Cyclin-dependent kinase 4/6 (CDK4/6) and PI3K inhibitors synergize in PIK3CA-mutant ER-positive HER2-negative breast cancer models. We conducted a phase Ib trial investigating the safety and efficacy of doublet CDK4/6 inhibitor palbociclib plus selective PI3K inhibitor taselisib in advanced solid tumors, and triplet palbociclib plus taselisib plus fulvestrant in 25 patients with PIK3CA-mutant, ER-positive HER2-negative advanced breast cancer. The triplet therapy response rate in PIK3CA-mutant, ER-positive HER2-negative cancer was 37.5% [95% confidence interval (CI), 18.8-59.4]. Durable disease control was observed in PIK3CA-mutant ER-negative breast cancer and other solid tumors with doublet therapy. Both combinations were well tolerated at pharmacodynamically active doses. In the triplet group, high baseline cyclin E1 expression associated with shorter progression-free survival (PFS; HR = 4.2; 95% CI, 1.3-13.1; P = 0.02). Early circulating tumor DNA (ctDNA) dynamics demonstrated high on-treatment ctDNA association with shorter PFS (HR = 5.2; 95% CI, 1.4-19.4; P = 0.04). Longitudinal plasma ctDNA sequencing provided genomic evolution evidence during triplet therapy. SIGNIFICANCE: The triplet of palbociclib, taselisib, and fulvestrant has promising efficacy in patients with heavily pretreated PIK3CA-mutant ER-positive HER2-negative advanced breast cancer. A subset of patients with PIK3CA-mutant triple-negative breast cancer derived clinical benefit from palbociclib and taselisib doublet, suggesting a potential nonchemotherapy targeted approach for this population.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Fulvestrant , Humans , Imidazoles , Oxazepines , Phosphatidylinositol 3-Kinases , Piperazines , Pyridines , Receptor, ErbB-2/genetics
8.
Front Oncol ; 10: 505, 2020.
Article in English | MEDLINE | ID: mdl-32363162

ABSTRACT

Background: Following chemo-radiotherapy (CRT) for human papilloma virus positive (HPV+) anal squamous cell carcinoma (ASCC), detection of residual/recurrent disease is challenging. Patients frequently undergo unnecessary repeated biopsies for abnormal MRI/clinical findings. In a pilot study we assessed the role of circulating HPV-DNA in identifying "true" residual disease. Methods: We prospectively collected plasma samples at baseline (n = 21) and 12 weeks post-CRT (n = 17). Circulating HPV-DNA (cHPV DNA) was measured using a novel next generation sequencing (NGS) assay, panHPV-detect, comprising of two primer pools covering distinct regions of eight high-risk HPV genomes (16, 18, 31, 33, 35, 45, 52, and 58) to detect circulating HPV-DNA (cHPV DNA). cHPV-DNA levels post-CRT were correlated to disease response. Results: In pre-CRT samples, panHPV-detect demonstrated 100% sensitivity and specificity for HPV associated ASCC. PanHPV-detect was able to demonstrate cHPV-DNA in 100% (9/9) patients with T1/T2N0 cancers. cHPV-DNA was detectable 12 weeks post CRT in just 2/17 patients, both of whom relapsed. 1/16 patients who had a clinical complete response (CR) at 3 months post-CRT but relapsed at 9 months and 1/1 patient with a partial response (PR). PanHPV-detect demonstrated 100% sensitivity and specificity in predicting response to CRT. Conclusion: We demonstrate that panHPV-detect, an NSG assay is a highly sensitive and specific test for the identification of cHPV-DNA in plasma at diagnosis. cHPV-DNA post-treatment may predict clinical response to CRT.

9.
Clin Cancer Res ; 26(3): 608-622, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31591187

ABSTRACT

PURPOSE: Advanced breast cancer (ABC) has not been subjected to the same degree of molecular scrutiny as early primary cancer. Breast cancer evolves with time and under the selective pressure of treatment, with the potential to acquire mutations with resistance to treatment and disease progression. To identify potentially targetable mutations in advanced breast cancer, we performed prospective molecular characterization of a cohort of patients with ABC. EXPERIMENTAL DESIGN: Biopsies from patients with advanced breast cancer were sequenced with a 41 genes targeted panel in the ABC Biopsy (ABC-Bio) study. Blood samples were collected at disease progression for circulating tumor DNA (ctDNA) analysis, along with matched primary tumor to assess for acquisition in ABC in a subset of patients. RESULTS: We sequenced 210 ABC samples, demonstrating enrichment compared with primary disease for potentially targetable mutations in HER2 (in 6.19% of samples), AKT1 (7.14%), and NF1 (8.10%). Of these enriched mutations, we show that NF1 mutations were frequently acquired in ABC, not present in the original primary disease. In ER-positive cancer cell line models, loss of NF1 resulted in endocrine therapy resistance, through both ER-dependent and -independent mechanisms. NF1 loss promoted ER-independent cyclin D1 expression, which could be therapeutically targeted with CDK4/6 inhibitors in vitro. Patients with NF1 mutations detected in baseline circulating tumor DNA had a good outcome on the CDK4/6 inhibitor palbociclib and fulvestrant. CONCLUSIONS: Our research identifies multiple therapeutic opportunities for advanced breast cancer and identifies the previously underappreciated acquisition of NF1 mutations.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Cyclin D1/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Mutation , Neurofibromin 1/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclin D1/metabolism , Female , Fulvestrant/administration & dosage , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Piperazines/administration & dosage , Prospective Studies , Pyridines/administration & dosage , Treatment Outcome
10.
Eur J Cancer ; 122: 12-21, 2019 11.
Article in English | MEDLINE | ID: mdl-31606655

ABSTRACT

INTRODUCTION: The MYC proto-oncogene is among the most commonly dysregulated genes in human cancers. We report screening data from the iMYC trial, an ongoing phase II study assessing ibrutinib monotherapy in advanced pretreated MYC- and/or HER2-amplified oesophagogastric cancer, representing the first attempt to prospectively identify MYC amplifications in this tumour type for the purposes of therapeutic targeting. METHODS: Screening utilising a fluorescent in situ hybridisation (FISH) assay for assessment of tumour MYC amplification has been instituted. An experimental digital droplet polymerase chain reaction (ddPCR) assay to assess MYC amplification in both tumour and circulating-tumour (ct)DNA has been developed and investigated. RESULTS: One hundred thirty-five archival tumour specimens have undergone successful FISH analysis with 23% displaying evidence of MYC amplification. Intertumour heterogeneity was observed, with the percentage of cancer cells harbouring MYC amplification ranging widely between samples (median 51%, range 11-94%). Intratumoural clonal diversity of MYC amplification was also observed, with a significant degree of variance in amplification ratios (Bartlett's test for equal variance p < 0.001), and an association between greater variance in MYC amplification and improved outcome with prior first-line chemotherapy. ddPCR was most accurate in quantifying MYC amplification in tumour-derived DNA from cases with a high proportion (>70%) of amplified cells within the tumour specimen but was not reliable in samples containing a low proportion of amplified cells or in ctDNA. CONCLUSIONS: Our results illustrate the utility of FISH to assess MYC amplification prospectively for a biomarker-selected trial by providing reliable and reproducible results in real time, with a high degree of heterogeneity of MYC amplification observed. We show that ddPCR can potentially detect high-level MYC amplifications in tumour tissue.


Subject(s)
Early Detection of Cancer/methods , Esophageal Neoplasms/diagnosis , In Situ Hybridization, Fluorescence/methods , Polymerase Chain Reaction/methods , Proto-Oncogene Proteins c-myc/genetics , Stomach Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Esophageal Neoplasms/genetics , Female , Humans , Male , Middle Aged , Prospective Studies , Proto-Oncogene Mas , Stomach Neoplasms/genetics
11.
JAMA Oncol ; 5(10): 1473-1478, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31369045

ABSTRACT

Importance: Current treatment cures most cases of early-stage, primary breast cancer. However, better techniques are required to identify which patients are at risk of relapse. Objective: To assess the clinical validity of molecular relapse detection with circulating tumor DNA (ctDNA) analysis in early-stage breast cancer. Design, Setting, and Participants: This prospective, multicenter, sample collection, validation study conducted at 5 United Kingdom medical centers from November 24, 2011, to October 18, 2016, assessed patients with early-stage breast cancer irrespective of hormone receptor and ERBB2 (formerly HER2 or HER2/neu) status who were receiving neoadjuvant chemotherapy followed by surgery or surgery before adjuvant chemotherapy. The study recruited 170 women, with mutations identified in 101 patients forming the main cohort. Secondary analyses were conducted on a combined cohort of 144 patients, including 43 patients previously analyzed in a proof of principle study. Interventions: Primary tumor was sequenced to identify somatic mutations, and personalized tumor-specific digital polymerase chain reaction assays were used to monitor these mutations in serial plasma samples taken every 3 months for the first year of follow-up and subsequently every 6 months. Main Outcomes and Measures: The primary end point was relapse-free survival analyzed with Cox proportional hazards regression models. Results: In the main cohort of 101 female patients (mean [SD] age, 54 [11] years) with a median follow-up of 35.5 months (interquartile range, 27.9-43.0 months), detection of ctDNA during follow-up was associated with relapse (hazard ratio, 25.2; 95% CI, 6.7-95.6; P < .001). Detection of ctDNA at diagnosis, before any treatment, was also associated with relapse-free survival (hazard ratio, 5.8; 95% CI, 1.2-27.1; P = .01). In the combined cohort, ctDNA detection had a median lead time of 10.7 months (95% CI, 8.1-19.1 months) compared with clinical relapse and was associated with relapse in all breast cancer subtypes. Distant extracranial metastatic relapse was detected by ctDNA in 22 of 23 patients (96%). Brain-only metastasis was less commonly detected by ctDNA (1 of 6 patients [17%]), suggesting relapse sites less readily detectable by ctDNA analysis. Conclusions and Relevance: The findings suggest that detection of ctDNA during follow-up is associated with a high risk of future relapse of early-stage breast cancer. Prospective studies are needed to assess the potential of molecular relapse detection to guide adjuvant therapy.


Subject(s)
Breast Neoplasms/genetics , Circulating Tumor DNA/genetics , Neoplasm Recurrence, Local/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Breast Neoplasms/blood , Breast Neoplasms/diagnosis , Circulating Tumor DNA/blood , Female , Humans , Middle Aged , Mutation , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/diagnosis , Recurrence
12.
Cancer Discov ; 8(11): 1390-1403, 2018 11.
Article in English | MEDLINE | ID: mdl-30206110

ABSTRACT

CDK4/6 inhibition with endocrine therapy is now a standard of care for advanced estrogen receptor-positive breast cancer. Mechanisms of CDK4/6 inhibitor resistance have been described preclinically, with limited evidence from clinical samples. We conducted paired baseline and end-of-treatment circulating tumor DNA sequencing from 195 patients in the PALOMA-3 randomized phase III trial of palbociclib plus fulvestrant versus placebo plus fulvestrant. We show that clonal evolution occurs frequently during treatment, reflecting substantial subclonal complexity in breast cancer that has progressed after prior endocrine therapy. RB1 mutations emerged only in the palbociclib plus fulvestrant arm and in a minority of patients (6/127, 4.7%, P = 0.041). New driver mutations emerged in PIK3CA (P = 0.00069) and ESR1 after treatment in both arms, in particular ESR1 Y537S (P = 0.0037). Evolution of driver gene mutations was uncommon in patients progressing early on palbociclib plus fulvestrant but common in patients progressing later on treatment. These findings inform future treatment strategies to address resistance to palbociclib plus fulvestrant.Significance: Acquired mutations from fulvestrant are a major driver of resistance to fulvestrant and palbociclib combination therapy. ESR1 Y537S mutation promotes resistance to fulvestrant. Clonal evolution results in frequent acquisition of driver mutations in patients progressing late on therapy, which suggests that early and late progression have distinct mechanisms of resistance. Cancer Discov; 8(11); 1390-403. ©2018 AACR. See related commentary by Schiff and Jeselsohn, p. 1352 This article is highlighted in the In This Issue feature, p. 1333.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/genetics , Clonal Evolution , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/genetics , Biomarkers, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Double-Blind Method , Female , Follow-Up Studies , Fulvestrant/administration & dosage , Humans , Mutation , Piperazines/administration & dosage , Prognosis , Pyridines/administration & dosage
13.
Br J Cancer ; 117(6): 876-883, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28809864

ABSTRACT

BACKGROUND: Following chemo-radiotherapy (CCRT) for human papilloma virus positive (HPV+) locally advanced head and neck cancer, patients frequently undergo unnecessary neck dissection (ND) and/or repeated biopsies for abnormal PET-CT, which causes significant morbidity. We assessed the role of circulating HPV DNA in identifying 'true' residual disease. METHODS: We prospectively recruited test (n=55) and validation (n=33) cohorts. HPV status was confirmed by E7 RT-PCR. We developed a novel amplicon-based next generation sequencing assay (HPV16-detect) to detect circulating HPV DNA. Circulating HPV DNA levels post-CCRT were correlated to disease response (PET-CT). RESULTS: In pre-CCRT plasma, HPV-detect demonstrated 100% sensitivity and 93% specificity, and 90% sensitivity and 100% specificity for the test (27 HPV+) and validation (20 HPV+) cohorts, respectively. Thirty-six out of 37 patients (test and validation cohort) with complete samples-set had negative HPV-detect at end of treatment. Six patients underwent ND (3) and repeat primary site biopsies (3) for positive PET-CT but had no viable tumour. One patient had positive HPV-detect and positive PET-CT and liver biopsy, indicating 100% agreement for HPV-detect and residual cancer. CONCLUSIONS: We demonstrate that HPV16-detect is a highly sensitive and specific test for identification of HPV DNA in plasma at diagnosis. HPV DNA post-treatment correlates with clinical response.


Subject(s)
Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/therapy , Chemoradiotherapy , DNA, Viral/blood , Head and Neck Neoplasms/blood , Head and Neck Neoplasms/therapy , Human papillomavirus 16/genetics , Carcinoma, Squamous Cell/pathology , Head and Neck Neoplasms/pathology , Humans , Hypopharyngeal Neoplasms/blood , Hypopharyngeal Neoplasms/pathology , Hypopharyngeal Neoplasms/surgery , Laryngeal Neoplasms/blood , Laryngeal Neoplasms/pathology , Laryngeal Neoplasms/therapy , Neck Dissection , Neoplasm, Residual , Oropharyngeal Neoplasms/blood , Oropharyngeal Neoplasms/pathology , Oropharyngeal Neoplasms/therapy , Prospective Studies , Sensitivity and Specificity , Treatment Outcome
14.
Cancer Res ; 76(8): 2301-13, 2016 04 15.
Article in English | MEDLINE | ID: mdl-27020857

ABSTRACT

Small-molecule inhibitors of the CDK4/6 cell-cycle kinases have shown clinical efficacy in estrogen receptor (ER)-positive metastatic breast cancer, although their cytostatic effects are limited by primary and acquired resistance. Here we report that ER-positive breast cancer cells can adapt quickly to CDK4/6 inhibition and evade cytostasis, in part, via noncanonical cyclin D1-CDK2-mediated S-phase entry. This adaptation was prevented by cotreatment with hormone therapies or PI3K inhibitors, which reduced the levels of cyclin D1 (CCND1) and other G1-S cyclins, abolished pRb phosphorylation, and inhibited activation of S-phase transcriptional programs. Combined targeting of both CDK4/6 and PI3K triggered cancer cell apoptosis in vitro and in patient-derived tumor xenograft (PDX) models, resulting in tumor regression and improved disease control. Furthermore, a triple combination of endocrine therapy, CDK4/6, and PI3K inhibition was more effective than paired combinations, provoking rapid tumor regressions in a PDX model. Mechanistic investigations showed that acquired resistance to CDK4/6 inhibition resulted from bypass of cyclin D1-CDK4/6 dependency through selection of CCNE1 amplification or RB1 loss. Notably, although PI3K inhibitors could prevent resistance to CDK4/6 inhibitors, they failed to resensitize cells once resistance had been acquired. However, we found that cells acquiring resistance to CDK4/6 inhibitors due to CCNE1 amplification could be resensitized by targeting CDK2. Overall, our results illustrate convergent mechanisms of early adaptation and acquired resistance to CDK4/6 inhibitors that enable alternate means of S-phase entry, highlighting strategies to prevent the acquisition of therapeutic resistance to these agents. Cancer Res; 76(8); 2301-13. ©2016 AACR.


Subject(s)
Breast Neoplasms/enzymology , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Receptors, Estrogen/metabolism , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Heterografts , Humans , Mice , Piperazines/therapeutic use , Pyridines/therapeutic use
15.
Sci Transl Med ; 7(313): 313ra182, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26560360

ABSTRACT

Acquired ESR1 mutations are a major mechanism of resistance to aromatase inhibitors (AIs). We developed ultra high-sensitivity multiplex digital polymerase chain reaction assays for ESR1 mutations in circulating tumor DNA (ctDNA) and investigated the clinical relevance and origin of ESR1 mutations in 171 women with advanced breast cancer. ESR1 mutation status in ctDNA showed high concordance with contemporaneous tumor biopsies and was accurately assessed in samples shipped at room temperature in preservative tubes. ESR1 mutations were found exclusively in estrogen receptor-positive breast cancer patients previously exposed to AI. Patients with ESR1 mutations had a substantially shorter progression-free survival on subsequent AI-based therapy [hazard ratio, 3.1; 95% confidence interval (CI), 1.9 to 23.1; P = 0.0041]. ESR1 mutation prevalence differed markedly between patients who were first exposed to AI during the adjuvant and metastatic settings [5.8% (3 of 52) versus 36.4% (16 of 44), respectively; P = 0.0002]. In an independent cohort, ESR1 mutations were identified in 0% (0 of 32; 95% CI, 0 to 10.9) tumor biopsies taken after progression on adjuvant AI. In a patient with serial sampling, ESR1 mutation was selected during metastatic AI therapy to become the dominant clone in the cancer. ESR1 mutations can be robustly identified with ctDNA analysis and predict for resistance to subsequent AI therapy. ESR1 mutations are rarely acquired during adjuvant AI but are commonly selected by therapy for metastatic disease, providing evidence that mechanisms of resistance to targeted therapy may be substantially different between the treatment of micrometastatic and overt metastatic cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Aromatase Inhibitors/administration & dosage , Breast Neoplasms/drug therapy , Estrogen Receptor alpha/genetics , Female , Humans , Multiplex Polymerase Chain Reaction
16.
PLoS One ; 10(9): e0139074, 2015.
Article in English | MEDLINE | ID: mdl-26413866

ABSTRACT

Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Genotyping Techniques , Lung Neoplasms/genetics , Multiplex Polymerase Chain Reaction/methods , Mutation/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Clone Cells , DNA, Neoplasm/genetics , Formaldehyde , Gene Frequency/genetics , High-Throughput Nucleotide Sequencing , Humans , Paraffin Embedding , Temperature , Tissue Fixation
17.
Sci Transl Med ; 7(302): 302ra133, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26311728

ABSTRACT

The identification of early-stage breast cancer patients at high risk of relapse would allow tailoring of adjuvant therapy approaches. We assessed whether analysis of circulating tumor DNA (ctDNA) in plasma can be used to monitor for minimal residual disease (MRD) in breast cancer. In a prospective cohort of 55 early breast cancer patients receiving neoadjuvant chemotherapy, detection of ctDNA in plasma after completion of apparently curative treatment-either at a single postsurgical time point or with serial follow-up plasma samples-predicted metastatic relapse with high accuracy [hazard ratio, 25.1 (confidence interval, 4.08 to 130.5; log-rank P < 0.0001) or 12.0 (confidence interval, 3.36 to 43.07; log-rank P < 0.0001), respectively]. Mutation tracking in serial samples increased sensitivity for the prediction of relapse, with a median lead time of 7.9 months over clinical relapse. We further demonstrated that targeted capture sequencing analysis of ctDNA could define the genetic events of MRD, and that MRD sequencing predicted the genetic events of the subsequent metastatic relapse more accurately than sequencing of the primary cancer. Mutation tracking can therefore identify early breast cancer patients at high risk of relapse. Subsequent adjuvant therapeutic interventions could be tailored to the genetic events present in the MRD, a therapeutic approach that could in part combat the challenge posed by intratumor genetic heterogeneity.


Subject(s)
Breast Neoplasms/genetics , DNA, Neoplasm/genetics , Mutation , Breast Neoplasms/blood , Breast Neoplasms/pathology , Female , High-Throughput Nucleotide Sequencing , Humans , Neoplasm, Residual , Precision Medicine , Recurrence
18.
Nucleic Acids Res ; 43(W1): W589-98, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25897122

ABSTRACT

The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations.


Subject(s)
Database Management Systems , Genomics , Humans , Internet , Neoplasms/genetics , Proteomics
19.
Nucleic Acids Res ; 43(Database issue): D831-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25332396

ABSTRACT

BCCTBbp (http://bioinformatics.breastcancertissue bank.org) was initially developed as the data-mining portal of the Breast Cancer Campaign Tissue Bank (BCCTB), a vital resource of breast cancer tissue for researchers to support and promote cutting-edge research. BCCTBbp is dedicated to maximising research on patient tissues by initially storing genomics, methylomics, transcriptomics, proteomics and microRNA data that has been mined from the literature and linking to pathways and mechanisms involved in breast cancer. Currently, the portal holds 146 datasets comprising over 227,795 expression/genomic measurements from various breast tissues (e.g. normal, malignant or benign lesions), cell lines and body fluids. BCCTBbp can be used to build on breast cancer knowledge and maximise the value of existing research. By recording a large number of annotations on samples and studies, and linking to other databases, such as NCBI, Ensembl and Reactome, a wide variety of different investigations can be carried out. Additionally, BCCTBbp has a dedicated analytical layer allowing researchers to further analyse stored datasets. A future important role for BCCTBbp is to make available all data generated on BCCTB tissues thus building a valuable resource of information on the tissues in BCCTB that will save repetition of experiments and expand scientific knowledge.


Subject(s)
Breast Neoplasms/genetics , Databases, Genetic , Tissue Banks , Breast Neoplasms/metabolism , Computational Biology , Female , Gene Expression Profiling , Genomics , Humans , Internet , Methylation , MicroRNAs/metabolism , Proteomics
20.
Nucleic Acids Res ; 42(Database issue): D944-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24163255

ABSTRACT

The Pancreatic Expression Database (PED, http://www.pancreasexpression.org) is the only device currently available for mining of pancreatic cancer literature data. It brings together the largest collection of multidimensional pancreatic data from the literature including genomic, proteomic, microRNA, methylomic and transcriptomic profiles. PED allows the user to ask specific questions on the observed levels of deregulation among a broad range of specimen/experimental types including healthy/patient tissue and body fluid specimens, cell lines and murine models as well as related treatments/drugs data. Here we provide an update to PED, which has been previously featured in the Database issue of this journal. Briefly, PED data content has been substantially increased and expanded to cover methylomics studies. We introduced an extensive controlled vocabulary that records specific details on the samples and added data from large-scale meta-analysis studies. The web interface has been improved/redesigned with a quick search option to rapidly extract information about a gene/protein of interest and an upload option allowing users to add their own data to PED. We added a user guide and implemented integrated graphical tools to overlay and visualize retrieved information. Interoperability with biomart-compatible data sets was significantly improved to allow integrative queries with pancreatic cancer data.


Subject(s)
Databases, Genetic , Gene Expression , Pancreas/metabolism , Pancreatic Neoplasms/genetics , Animals , Humans , Internet , Mice , Pancreatic Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...