Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 385: 121554, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31753665

ABSTRACT

The consumption of methylphenidate, a nootropic drug used to improve mental performance, is becoming increasingly serious. Methylphenidate is metabolized in human liver to ritalinic acid, which has been commonly detected in sewage and surface waters. Additionally, ritalinic acid serves as a biomarker in sewage epidemiology studies. Thus knowledge of the stability and microbial degradation pathways of ritalinic acid is essential for proper estimation of methylphenidate consumption. In the study reported here, we describe the fast formation of a previously unknown, dead-end metabolite of ritalinic acid by Nocardioides sp. strain MW5. HRMS and 2D NMR analyses allowed precisely identification of the compound as an imidazole-based alkaloid cation with chemical formula 11-[3-(formylamino)propyl]-1,2,3,4,6,7,8,9-octahydrodipyrido[1,2-a:1',2'-c]imidazole-5-ium. In experiments, Nocardioides sp. strain MW5 transformed 34% of ritalinic acid into this metabolite, while 52% was mineralized into CO2. Alkaloid was not biodegraded during the OECD 301 F test. This study provides new insight into the environmental fate of methylphenidate and its metabolites. The data collected are essential for assessing nootropic drug consumption by sewage epidemiology and should lead to a better understanding of microbial degradation of ritalinic acid.


Subject(s)
Biomarkers/analysis , Imidazoles/analysis , Methylphenidate/analogs & derivatives , Nocardioides/metabolism , Biodegradation, Environmental , Biomarkers/chemistry , Imidazoles/chemistry , Methylphenidate/metabolism , Wastewater-Based Epidemiological Monitoring
2.
Appl Microbiol Biotechnol ; 102(23): 10299-10314, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30294753

ABSTRACT

In the last decade, biological degradation and mineralization of antibiotics have been increasingly reported feats of environmental bacteria. The most extensively described example is that of sulfonamides that can be degraded by several members of Actinobacteria and Proteobacteria. Previously, we reported sulfamethoxazole (SMX) degradation and partial mineralization by Achromobacter denitrificans strain PR1, isolated from activated sludge. However, further studies revealed an apparent instability of this metabolic trait in this strain. Here, we investigated this instability and describe the finding of a low-abundance and slow-growing actinobacterium, thriving only in co-culture with strain PR1. This organism, named GP, shared highest 16S rRNA gene sequence similarity (94.6-96.9%) with the type strains of validly described species of the genus Leucobacter. This microbial consortium was found to harbor a homolog to the sulfonamide monooxygenase gene (sadA) also found in other sulfonamide-degrading bacteria. This gene is overexpressed in the presence of the antibiotic, and evidence suggests that it codes for a group D flavin monooxygenase responsible for the ipso-hydroxylation of SMX. Additional side reactions were also detected comprising an NIH shift and a Baeyer-Villiger rearrangement, which indicate an inefficient biological transformation of these antibiotics in the environment. This work contributes to further our knowledge in the degradation of this ubiquitous micropollutant by environmental bacteria.


Subject(s)
Achromobacter denitrificans/metabolism , Actinobacteria/metabolism , Biodegradation, Environmental , Sulfamethoxazole/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Gene Expression Regulation, Bacterial , Gene Library , Metagenomics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sewage/microbiology
3.
Chemosphere ; 213: 568-577, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30268053

ABSTRACT

Nano-scale zero-valent iron (nZVI) began attracting research attention in remediation practice in recent decades as a prospective nanomaterial applicable to various contaminated matrices. Despite concerns about the negative effects of nanomaterials on ecosystems, the number of reliable toxicity tests is limited. We have developed a test based on the evaluation of oxidative stress (OS). The test employed the analysis of a typical OS marker (malondialdehyde, MDA), after exposure of six bacterial strains to the tested nanomaterial. We also attempted to use other OS and cell membrane damage assays, including the determination of glutathione and lactate dehydrogenase, respectively. However, we found that the components of these assays interfered with nZVI; therefore, these tests were not applicable. The MDA assay was tested using nZVI and three newly engineered oxide shell nZVI materials with different oxide thicknesses. Six different bacterial species were employed, and the results showed that the test was fully applicable for the concentrations of nanomaterials used in remediation practice (0.1-10 g/L). MDA was produced in a dose-response manner, and the bacteria showed a similar response toward pure pyrophoric nZVI, reaching EC50 values of 0.3-1.1 g/L. We observed different responses in the absolute production of MDA; however, the MDA concentrations were correlated with the cell membrane surfaces of the individual strains (R > 0.75; P < 0.09). Additionally, the EC50 values correlated with the thickness of the oxide shells (except for Escherichia coli: R > 0.95; P < 0.05), documenting the reliability of the assay, where reactivity was confirmed to be an important factor for reactive oxygen species production.


Subject(s)
Bacteria/drug effects , Iron/toxicity , Lipid Peroxidation , Metal Nanoparticles/toxicity , Malondialdehyde , Nanostructures/toxicity , Oxidative Stress , Prospective Studies , Reactive Oxygen Species/metabolism , Reproducibility of Results , Toxicity Tests/methods
4.
N Biotechnol ; 43: 30-36, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-28855122

ABSTRACT

The consumption of nootropic drugs has increased tremendously in the last decade, though the studies on their environmental fate are still scarce. Nootropics are bioactive compounds designed to alter human's physiology therefore the adverse effects towards wildlife can be expected. In order to understand their environmental impact, the knowledge on their transformation pathways is necessary. Methylphenidate belongs to the most prescribed neuro-enhancers and is among the most favored smart drugs used in non-medical situations. It is metabolized in human liver and excreted as ritalinic acid. Here, we showed for the first time that ritalinic acid can be biodegraded and used as a sole carbon and nitrogen source by various microbial strains originating from different environmental samples. Five axenic strains were isolated and identified as: Arthrobacter sp. strain MW1, MW2 and MW3, Phycicoccus sp. strain MW4 and Nocardioides sp. strain MW5. Our research provides the first insight into the metabolism of ritalinic acid and suggests that it may differ depending on the strain and growth conditions, especially on availability of nitrogen. The isolates obtained in this study can serve as model organisms in further studies on the catabolism of ritalinic acid and methylphenidate but potentially also other compounds with similar structures. Our findings have important implication for the sewage epidemiology. We demonstrated that ritalinic acid is subject to quick and efficient biodegradation thus its use as a stable biomarker should be reconsidered.


Subject(s)
Actinomycetales/isolation & purification , Arthrobacter/isolation & purification , Methylphenidate/analogs & derivatives , Methylphenidate/metabolism , Actinomycetales/growth & development , Arthrobacter/growth & development , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Humans , Methylphenidate/analysis , Molecular Structure
5.
N Biotechnol ; 43: 44-52, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-28855123

ABSTRACT

Methylphenidate is widely used as a medication for the treatment of attention deficit hyperactivity disorder (ADHD) in children. Less than 1% of methylphenidate is excreted unchanged in urine, while 80% of an oral dose is excreted as ritalinic acid (which is reportedly poorly degradable). This study aims to investigate the biotransformation of ritalinic acid by free and immobilized enzymes. The influence of various laccase mediators on biotransformation efficiency has been tested. Formation of the main transformation products has been monitored and their potential structures suggested. The effective transformation of ritalinic acid was observed only in the presence of 2,2,6,6-tetramethylpiperidine 1-oxyl mediator (TEMPO). The most effective enzyme was the laccase of T. versicolor 159. The main transformation product was an N-methyl derivative of ritalinic acid. Ritalinic acid was also reduced to aldehyde and alcohol, and a broad spectrum of intermediate complexes with oxoammonium ion of TEMPO were detected. This is the first time the biotransformation of ritalinic acid has been investigated in detail.


Subject(s)
Cyclic N-Oxides/metabolism , Laccase/metabolism , Methylphenidate/analogs & derivatives , Alcohols/chemistry , Alcohols/metabolism , Aldehydes/chemistry , Aldehydes/metabolism , Biotransformation , Cyclic N-Oxides/chemistry , Enzymes, Immobilized/metabolism , Methylphenidate/analysis , Methylphenidate/metabolism , Oxidation-Reduction , Trametes/enzymology
6.
N Biotechnol ; 43: 37-43, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-28720419

ABSTRACT

Piracetam (2-oxo-1-pyrrolidine acetamide) is a popular cognitive enhancer, which has recently been detected in waste and drinking water. Nootropic drugs are designed to affect human metabolism and act on the nervous system, but their environmental effects have yet to be the subject of detailed studies. In this report, we present the efficient biodegradation of the cognitive enhancer, piracetam. Two bacterial strains capable of using this compound as the sole carbon source were isolated and later identified as Ochrobactrum anthropi strain MW6 and Ochrobactrum intermedium strain MW7. The compound's mineralization and the cleavage of the heterocyclic ring were shown in the experiments with 14C-labeled piracetam. This is also the first report of a pharmaceutical's degradation by the Ochrobactrum genus. This study presents model microorganisms that can be used in further investigation of piracetam's degradation pathways as well as enzymes and genes involved in the process.


Subject(s)
Nootropic Agents/metabolism , Ochrobactrum/metabolism , Piracetam/metabolism , Chromatography, High Pressure Liquid , Ochrobactrum/growth & development , Ochrobactrum/isolation & purification , Piracetam/analysis
7.
Appl Microbiol Biotechnol ; 101(6): 2575-2588, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27904924

ABSTRACT

Lignin, a complex three-dimensional amorphous polymer, is considered to be a potential natural renewable resource for the production of low-molecular-weight aromatic compounds. In the present study, a novel sequential lignin treatment method consisting of a biocatalytic oxidation step followed by a formic acid-induced lignin depolymerization step was developed and optimized using response surface methodology. The biocatalytic step employed a laccase mediator system using the redox mediator 1-hydroxybenzotriazole. Laccases were immobilized on superparamagnetic nanoparticles using a sorption-assisted surface conjugation method allowing easy separation and reuse of the biocatalysts after treatment. Under optimized conditions, as much as 45 wt% of lignin could be solubilized either in aqueous solution after the first treatment or in ethyl acetate after the second (chemical) treatment. The solubilized products were found to be mainly low-molecular-weight aromatic monomers and oligomers. The process might be used for the production of low-molecular-weight soluble aromatic products that can be purified and/or upgraded applying further downstream processes.


Subject(s)
Enzymes, Immobilized/chemistry , Formates/chemistry , Fungal Proteins/chemistry , Laccase/chemistry , Lignin/chemistry , Acetates/chemistry , Adsorption , Biocatalysis , Biomass , Factor Analysis, Statistical , Magnetite Nanoparticles/chemistry , Oxidation-Reduction , Triazoles/chemistry
8.
J Hazard Mater ; 324(Pt B): 701-710, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27894756

ABSTRACT

The objective of this work was to test the PCB-degrading abilities of two white-rot fungi, namely Pleurotus ostreatus and Irpex lacteus, in real contaminated soils with different chemical properties and autochthonous microflora. In addition to the efficiency in PCB removal, attention was given to other important parameters, such as changes in the toxicity and formation of PCB transformation products. Moreover, structural shifts and dynamics of both bacterial and fungal communities were monitored using next-generation sequencing and phospholipid fatty acid analysis. The best results were obtained with P. ostreatus, which resulted in PCB removals of 18.5, 41.3 and 50.5% from the bulk, top (surface) and rhizosphere, respectively, of dumpsite soils after 12 weeks of treatment. Numerous transformation products were detected (hydoxylated and methoxylated PCBs, chlorobenzoates and chlorobenzyl alcohols), which indicates that both fungi were able to oxidize and decompose the aromatic moiety of PCBs in the soils. Microbial community analysis revealed that P. ostreatus efficiently colonized the soil samples and suppressed other fungal genera. However, the same fungus substantially stimulated bacterial taxa that encompass putative PCB degraders. The results of this study finally demonstrated the feasibility of using this fungus for possible scaled-up bioremediation applications.


Subject(s)
Pleurotus/growth & development , Pleurotus/metabolism , Polychlorinated Biphenyls/analysis , Soil Pollutants/analysis , Biodegradation, Environmental , Czech Republic , Polychlorinated Biphenyls/metabolism , Soil/chemistry , Soil Microbiology , Soil Pollutants/metabolism
9.
Sci Total Environ ; 566-567: 250-259, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27220102

ABSTRACT

The removal of aged hydrophobic contaminants from fine-textured soils is a challenging issue in remediation. The objective of this study was to compare the efficacy of augmentation treatments to that of biostimulation in terms of total aliphatic hydrocarbon (TAH) and toxicity removal from a historically contaminated clay soil and to assess their impact on the resident microbial community. To this aim, Pleurotus ostreatus, Botryosphaeria rhodina and a combination of both were used as the inoculants while the addition of a sterilized lignocellulose mixture to soil (1:5, w/w) was used as a biostimulation approach. As opposed to the non-amended control soil, where no changes in TAH concentration and residual toxicity were observed after 60days, the activation of specialized bacteria was found in the biostimulated microcosms resulting in significant TAH removal (79.8%). The bacterial community structure in B. rhodina-augmented microcosms did not differ from the biostimulated microcosms due to the inability of the fungus to be retained within the resident microbiota. Best TAH removals were observed in microcosms inoculated with P. ostreatus alone (Po) and in binary consortium with B. rhodina (BC) (86.8 and 88.2%, respectively). In these microcosms, contaminant degradation exceeded their bioavailability thresholds determined by sequential supercritical CO2 extraction. Illumina metabarcoding of 16S rRNA gene showed that the augmentation with Po and BC led to lower relative abundances of Gram(+) taxa, Actinobacteria in particular, than those in biostimulated microcosms. Best detoxification, with respect to the non-amended incubation control, was found in Po microcosms where a drop in collembola mortality (from 90 to 22%) occurred. At the end of incubation, in both Po and BC, the relative abundances of P. ostreatus sequences were higher than 60% thus showing the suitability of this fungus in bioaugmentation-based remediation applications.


Subject(s)
Ascomycota/metabolism , Hydrocarbons/metabolism , Pleurotus/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Biological Availability , High-Throughput Nucleotide Sequencing , Italy
10.
J Hazard Mater ; 301: 17-26, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26342147

ABSTRACT

The feasibility of decontaminating creosote-treated wood (CTW) by co-composting with agricultural wastes was investigated using two bulking agents, grass cuttings (GC) and broiler litter (BL), each employed at a 1:1 ratio with the matrix. The initial concentration of total polycyclic aromatic hydrocarbons (PAHs) in CTW (26,500 mg kg(-1)) was reduced to 3 and 19% after 240 d in GC and BL compost, respectively. PAH degradation exceeded the predicted bioaccesible threshold, estimated through sequential supercritical CO2 extraction, together with significant detoxification, assessed by contact tests using Vibrio fisheri and Hordeum vulgare. GC composting was characterized by high microbial biomass growth in the early phases, as suggested by phospholipid fatty acid analyses. Based on the 454-pyrosequencing results, fungi (mostly Saccharomycetales) constituted an important portion of the microbial community, and bacteria were characterized by rapid shifts (from Firmicutes (Bacilli) and Actinobacteria to Proteobacteria). However, during BL composting, larger amounts of prokaryotic and eukaryotic PLFA markers were observed during the cooling and maturation phases, which were dominated by Proteobacteria and fungi belonging to the Ascomycota and those putatively related to the Glomeromycota. This work reports the first in-depth analysis of the chemical and microbiological processes that occur during the co-composting of a PAH-contaminated matrix.


Subject(s)
Creosote , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Soil , Wood , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/genetics , DNA, Fungal/genetics , Fatty Acids/metabolism , Fungi/classification , Fungi/genetics , Fungi/metabolism , RNA, Ribosomal, 16S/genetics , Waste Management/methods
11.
Ecotoxicol Environ Saf ; 120: 223-34, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26092554

ABSTRACT

Polychlorinated biphenyl (PCB) organohalide-respiring communities from the efflux channel of a former Delor manufacturer in Eastern Slovakia were assessed using metagenomic, statistical and cultivation-adapted approaches. Multivariate analysis of environmental factors together with terminal restriction fragment length polymorphisms of the bacterial communities in the primary sediments revealed both temporal and spatial heterogeneity in the distribution of microbial populations, which reflects the dynamic pattern of contamination and altered conditions for biodegradation activity along the channel. Anaerobic microcosms were developed from eight sediments sampled along the channel, where high concentrations of PCBs - from 6.6 to 136mg/kg dry weight, were measured. PCB dehalorespiring activity, congruent with changes in the microbial composition in all microcosms, was detected. After 10 months of cultivation, the divergently evolved consortia achieved up to 35.9 percent reduction of the total PCB concentration. Phylogenetic-analysis of the active Chloroflexi-related organohalide-respiring bacteria by partial sequencing of 16S rRNA genes in cDNA from microcosms with the highest PCB dechlorination activity revealed diverse and unique complexity of the populations. The predominant organohalide respirers were either affiliated with Dehalococcoides sp. and Dehalococcoides-like group (DLG) organisms or were composed of currently unknown distant clades of DLG bacteria. The present study should encourage researchers to explore the full potential of the indigenous PCB dechlorinating populations to develop effective bioremediation approaches that can perform the complete mineralization of PCBs in polluted environments.


Subject(s)
Bacteria, Anaerobic/isolation & purification , Chloroflexi/isolation & purification , Microbial Consortia , Polychlorinated Biphenyls/analysis , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/metabolism , Biodegradation, Environmental , Chloroflexi/metabolism , Cloning, Molecular , DNA, Bacterial/genetics , Environmental Monitoring , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Halogenation , Hydrogen-Ion Concentration , Multivariate Analysis , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Slovakia , Water Pollutants, Chemical/analysis
12.
N Biotechnol ; 32(6): 701-9, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-25882606

ABSTRACT

Contamination by 2,4,6-trinitrotoluene (TNT), an explosive extensively used by the military, represents a serious environmental problem. In this study, whey has been selected as the most technologically and economically suitable primary substrate for anaerobic in situ biodegradation of TNT. Under laboratory conditions, various additions of whey, molasses, acetate and activated sludge as an inoculant were tested and the process was monitored using numerous chemical analyses including phospholipid fatty acid analysis. The addition of whey resulted in the removal of more than 90% of the TNT in real contaminated soil (7 mg kg(-1) and 12 mg kg(-1) of TNT). The final bioremediation strategy was suggested on the basis of the laboratory results and tested under real conditions at a TNT contaminated site in the Czech Republic. During the pilot test, three repeated injections of whey suspension into the sandy aquifer were performed over a 10-month period. In total, approximately 5m(3) of whey were used. A substantial decrease in the TNT groundwater concentration from the original levels (equalling 1.49 mg l(-1) to 8.58 mg l(-1)) was observed in most of the injection wells, while the concentrations of the TNT biotransformation products were found to be elevated. Pilot-scale application results showed that the anoxic and/or anaerobic conditions in the aquifer were sufficient for TNT bio-reduction by autochthonous microorganisms. Whey application was not accompanied by undesirable effects such as a substantial decrease in the pH or clogging of the wells. The results of the study document the suitability of application of whey to bioremediate TNT contaminated sites in situ.


Subject(s)
Groundwater/microbiology , Trinitrotoluene/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , Whey/metabolism , Anaerobiosis/physiology , Biodegradation, Environmental , Electron Transport , Electrons , Oxidation-Reduction , Pilot Projects , Trinitrotoluene/chemistry , Trinitrotoluene/isolation & purification , Water Pollutants, Chemical/isolation & purification , Whey/chemistry
13.
Chemosphere ; 136: 311-20, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25592459

ABSTRACT

A group of white rot fungi (Irpex lacteus, Panus tigrinus, Dichomitus squalens, Trametes versicolor and Pleurotus ostreatus) was investigated for the biodegradation of norfloxacin (NOR), ofloxacin (OF) and ciprofloxacin (CIP). The selected fluoroquinolones were readily degraded almost completely by I. lacteus and T. versicolor within 10 and 14 d of incubation in liquid medium, respectively. The biodegradation products were identified by liquid chromatography-mass spectrometry. The analyses indicated that the fungi use similar mechanisms to degrade structurally related antibiotics. The piperazine ring of the molecules is preferably attacked via either substitution or/and decomposition. In addition to the degradation efficiency, attention was devoted to the residual antibiotic activities estimated using Gram-positive and Gram-negative bacteria. Only I. lacteus was able to remove the antibiotic activity during the course of the degradation of NOR and OF. The product-effect correlations evaluated by Principal Component Analysis (PCA) enabled elucidation of the participation of the individual metabolites in the residual antibacterial activity. Most of the metabolites correlated with the antibacterial activity, explaining the rather high residual activity remaining after the biodegradation. PCA of ligninolytic enzyme activities indicated that manganese peroxidase might participate in the degradation.


Subject(s)
Anti-Bacterial Agents/metabolism , Biotransformation , Fluoroquinolones/metabolism , Biodegradation, Environmental , Mass Spectrometry , Norfloxacin , Ofloxacin , Peroxidases , Pleurotus/metabolism , Polyporales/metabolism , Trametes/metabolism
14.
Sci Total Environ ; 505: 545-54, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25461057

ABSTRACT

The present work was aimed at isolating and identifying the main members of the mycobiota of a clay soil historically contaminated by mid- and long-chain aliphatic hydrocarbons (AH) and to subsequently assess their hydrocarbon-degrading ability. All the isolates were Ascomycetes and, among them, the most interesting was Pseudoallescheria sp. 18A, which displayed both the ability to use AH as the sole carbon source and to profusely colonize a wheat straw:poplar wood chip (70:30, w/w) lignocellulosic mixture (LM) selected as the amendment for subsequent soil remediation microcosms. After a 60 d mycoaugmentation with Pseudoallescheria sp. of the aforementioned soil, mixed with the sterile LM (5:1 mass ratio), a 79.7% AH reduction and a significant detoxification, inferred by a drop in mortality of Folsomia candida from 90 to 24%, were observed. However, similar degradation and detoxification outcomes were found in the non-inoculated incubation control soil that had been amended with the sterile LM. This was due to the biostimulation exerted by the amendment on the resident microbiota, fungi in particular, the activity and density of which were low, instead, in the non-amended incubation control soil.


Subject(s)
Fungi/metabolism , Hydrocarbons/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Hydrocarbons/analysis , Soil/chemistry , Soil Pollutants/analysis
15.
Environ Sci Technol ; 47(24): 14128-36, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24261869

ABSTRACT

Flumequine, a fluoroquinolone antibiotic, is applied preferably in veterinary medicine, for stock breeding and treatment of aquacultures. Formation of drug resistance is a matter of general concern when antibiotics such as flumquine occur in the environment. Thus, biodegradation of flumequine in solution was investigated using five different ligninolytic fungi. Irpex lacteus, Dichomitus squalens, and Trametes versicolor proved most efficient and transformed more than 90% of flumequine within 6 or even 3 days. Panus tigrinus and Pleurotus ostreatus required up to 14 days to remove >90% of flumequine. Analyses of the metabolites by liquid chromatography-mass spectrometry suggest different transformation pathways for the different fungal strains. Structure proposals were elaborated for 8 metabolites. 7-Hydroxy-flumequine and flumequine ethyl ester were identified as common metabolites produced by all ligninolytic fungi. The largest variety of metabolites was formed by D. squalens. Residual antibacterial activity of the metabolite mixtures was tested using gram-positive and gram-negative bacteria. While for the less efficient P. tigrinus and P. ostreatus cultures the antibacterial activities corresponded to the residual concentrations of flumequine, a remarkable antibacterial activity remained in the D. squalens cultures although flumequine was transformed to more than 90%. Obviously, antibacterially active transformation products were formed by this fungal strain.


Subject(s)
Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Fluoroquinolones/metabolism , Fluoroquinolones/pharmacology , Fungi/metabolism , Lignin/metabolism , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Biodegradation, Environmental/drug effects , Biotransformation/drug effects , Chromatography, High Pressure Liquid , Culture Media/chemistry , Fluoroquinolones/chemistry , Mass Spectrometry , Microbial Sensitivity Tests , Pleurotus/metabolism , Principal Component Analysis , Trametes/metabolism
16.
J Hazard Mater ; 254-255: 116-124, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23611796

ABSTRACT

Sequential supercritical fluid extraction together with a two-site desorption model were employed to estimate the bioaccessible fraction of polycyclic aromatic hydrocarbons (PAHs) in four historically contaminated soils. The ecotoxicity of the soils was assayed by four different contact tests. The same soils were exposed to exhaustive extraction and the extracts were returned to the soils to ensure total 100% bioaccessibility of the pollutants. Then the soils were assayed again. Statistical evaluation revealed that the predicted bioaccessible PAHs generally correlated with the ecotoxicity responses of the tests. The estimated bioaccessible fractions varied from 10 to 98%. This value increased for PAHs with higher lipophilicity and showed no correlation with the organic carbon content in the soils. The ecotoxicity tests in the study indicated different sensitivity toward PAHs and the tests employing Heterocypris incongruens and Eisenia fetida were found to be more suitable than Lemna minor and Vibrio fischeri. Mortality and growth inhibition of ostracods correlated with all the types of PAHs and earthworm growth inhibition and mortality were preferentially sensitive to PAHs with only 3-4 aromatic rings. Determination of the biota-soil accumulation factors indicated that the earthworm growth inhibition corresponded to increased accumulation of PAHs in the earthworm tissue.


Subject(s)
Polycyclic Aromatic Hydrocarbons/toxicity , Soil Pollutants/toxicity , Aliivibrio fischeri/drug effects , Aliivibrio fischeri/metabolism , Animals , Araceae/drug effects , Araceae/growth & development , Crustacea/drug effects , Crustacea/growth & development , Luminescence , Oligochaeta/drug effects , Oligochaeta/growth & development , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis
17.
Chemosphere ; 88(11): 1317-23, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22546633

ABSTRACT

The aim of the present study was to compare the degrading capabilities of eight ligninolytic fungal representatives towards a technical mixture of polychlorinated biphenyls (Delor 103). Axenic cultures of the fungi, either in complex or N-limited liquid media, were spiked with the technical mixture of Delor 103. All of the fungal strains were able to degrade the pollutant significantly after 6weeks of incubation in both media. Outstanding results were achieved by the treatment with Pleurotus ostreatus, which removed 98.4% and 99.6% of the PCB mixture in complex and mineral media, respectively. This fungus was the only one capable of breaking down penta- and hexachlorinated biphenyls in the complex medium. Ecotoxicological assays performed with the luminescent bacterium Vibrio fischeri demonstrated that all of the fungal strains employed in this study were able to remove the toxicity only temporarily (e.g., after 28d of incubation), while P. ostreatus was capable of suppressing the toxicity associated to PCBs along the whole incubation period in both media. We also performed an extensive set of qualitative GC/MS analyses and chlorinated derivatives of hydroxy- and methoxy-biphenyls were detected along with monoaromatic structures, i.e. chlorobenzoic acids, chlorobenzaldehydes and chlorobenzyl alcohols. This results indicate that both intracellular (cytochrome P-450 monooxigenase, aryl-alcohol dehydrogenase and aryl-aldehyde dehydrogenase) and extracellular (ligninolytic enzymes) enzymatic systems could be involved in the biotransformation of PCB by ligninolytic fungi. The data from this work also document that the fungi are able to degrade further the main metabolites on the PCB pathway (i.e. chlorobenzoic acids) simultaneously with PCBs.


Subject(s)
Biodegradation, Environmental , Fungi/metabolism , Polychlorinated Biphenyls/metabolism , Pleurotus/metabolism
18.
J Hazard Mater ; 196: 386-94, 2011 Nov 30.
Article in English | MEDLINE | ID: mdl-21963171

ABSTRACT

We investigated the abilities of several perspective ligninolytic fungal strains to degrade 12 mono-, di- and trichloro representatives of chlorobenzoic acids (CBAs) under model liquid conditions and in contaminated soil. Attention was also paid to toxicity changes during the degradation, estimated using two luminescent assay variations with Vibrio fischeri. The results show that almost all the fungi were able to efficiently degrade CBAs in liquid media, where Irpex lacteus, Pycnoporus cinnabarinus and Dichomitus squalens appeared to be the most effective in the main factors: degradation and toxicity removal. Analysis of the degradation products revealed that methoxy and hydroxy derivatives were produced together with reduced forms of the original acids. The findings suggest that probably more than one mechanism is involved in the process. Generally, the tested fungal strains were able to degrade CBAs in soil in the 85-99% range within 60 days. Analysis of ergosterol showed that active colonization is an important factor for degradation of CBAs by fungi. The most efficient strains in terms of degradation were I. lacteus, Pleurotus ostreatus, Bjerkandera adusta in soil, which were also able to actively colonize the soil. However, in contrast to P. ostreatus and I. lacteus, B. adusta was not able to significantly reduce the measured toxicity.


Subject(s)
Chlorobenzoates/analysis , Lignin/chemistry , Polyporales/growth & development , Soil Pollutants/analysis , Aliivibrio fischeri/drug effects , Biodegradation, Environmental , Chlorobenzoates/toxicity , Chromatography, High Pressure Liquid , Ergosterol/metabolism , Kinetics , Polyporales/enzymology , Soil Microbiology , Soil Pollutants/toxicity
19.
J Hazard Mater ; 183(1-3): 669-76, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20728989

ABSTRACT

This study comparatively investigated the PAH degradation ability of Lentinus tigrinus and Irpex lacteus in a historically polluted soil and creosote-impregnated shavings. With this regard, the effect of type of inoculum carrier (i.e., wheat straw, corn cobs and commercial pellets) and contaminant bioavailability was thoroughly determined. Although degradation performances of L. tigrinus were not significantly affected by the type of the support, they were invariably better than those of I. lacteus on both the polluted soil and the creosote-impregnated shavings. Although degradation efficiencies of all fungal microcosms were highly and significantly correlated with bioavailability, certain PAHs, such as chrysene and benzo[a]pyrene, were removed by L. tigrinus from the polluted soil at amounts that exceeded about 2.3-fold their respective bioavailabilities. Degradation of PAHs was negatively correlated with their organic carbon sorption coefficients (K(oc)) and hydrophobicity (logP). The strength of linear association with the latter parameter, however, was not affected by the type of contaminated matrix in L. tigrinus-based microcosms while it was significantly larger in the historically polluted soil than in the creosote-impregnated shavings in I. lacteus ones.


Subject(s)
Biodegradation, Environmental , Lentinula/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Carbon , Hydrophobic and Hydrophilic Interactions
20.
Chemosphere ; 79(8): 855-64, 2010 May.
Article in English | MEDLINE | ID: mdl-20299070

ABSTRACT

The objective of the study was to investigate the impact of chopped wheat straw (CWS), ground corn cobs (GCC) and commercial pellets (CP), as inoculum carriers, on both growth and polycyclic aromatic hydrocarbons (PAH) degradation performances of Dichomitus squalens, Pleurotus ostreatus and Coprinus comatus. A historically-contaminated soil (HCS) and creosote-treated shavings (CTS) from the Sobeslav wood preservation plant, characterized by different relative abundances of the PAH bioavailable fractions, were used to assess the contaminated matrix effect and its interaction with both carrier and fungal strain. In HCS, best results were obtained with CP-immobilized P. ostreatus, which was able to deplete benzo[a]anthracene, chrysene, benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF) and benzo[a]pyrene (BaP) by 69.1%, 29.7%, 39.7%, 32.8% and 85.2%, respectively. Only few high-molecular mass PAHs such as BbF, BkF and BaP were degraded beyond their respective bioavailable fractions and this effect was confined to a limited number of inoculants. In CTS, only phenanthrene degradation exceeded its respective bioavailability from 1.42 to 1.86-fold. Regardless of both inoculum carrier and fungal species, degradation was positively and significantly (P<0.001) correlated with bioavailability in fungal microcosms on HCS and CTS and such correlation was very similar in the two matrices (R(adj)(2) equal to 0.60 and 0.59, respectively). The ability of white-rot fungi to degrade certain PAHs beyond their bioavailability was experimentally proven by this study. Although CTS and HCS considerably differed in their physico-chemical properties, PAH contents and contaminant aging, the relationship between degradation and bioavailability was not significantly affected by the type of matrix.


Subject(s)
Fungi/metabolism , Industrial Waste/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Wood , Biodegradation, Environmental , Coprinus/metabolism , Ergosterol/isolation & purification , Hordeum/drug effects , Pleurotus/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Polyporaceae/metabolism , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...