Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Cells ; 13(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38727287

Currently, more and more people are suffering from chronic kidney disease (CKD). It is estimated that CKD affects over 10% of the population worldwide. This is a significant issue, as the kidneys largely contribute to maintaining homeostasis by, among other things, regulating blood pressure, the pH of blood, and the water-electrolyte balance and by eliminating unnecessary metabolic waste products from blood. What is more, this disease does not show any specific symptoms at the beginning. The development of CKD is predisposed by certain conditions, such as diabetes mellitus or hypertension. However, these disorders are not the only factors promoting the onset and progression of CKD. The primary purpose of this review is to examine renin-angiotensin-aldosterone system (RAAS) activity, transforming growth factor-ß1 (TGF-ß1), vascular calcification (VC), uremic toxins, and hypertension in the context of their impact on the occurrence and the course of CKD. We firmly believe that a deeper comprehension of the cellular and molecular mechanisms underlying CKD can lead to an enhanced understanding of the disease. In the future, this may result in the development of medications targeting specific mechanisms involved in the decline of kidney function. Our paper unveils the selected processes responsible for the deterioration of renal filtration abilities.


Disease Progression , Renal Insufficiency, Chronic , Renin-Angiotensin System , Humans , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renin-Angiotensin System/physiology , Animals , Hypertension/physiopathology , Hypertension/pathology , Vascular Calcification/metabolism , Vascular Calcification/pathology , Vascular Calcification/physiopathology , Transforming Growth Factor beta1/metabolism , Kidney/pathology , Kidney/metabolism , Kidney/physiopathology
2.
Int J Mol Sci ; 25(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791250

Atherosclerotic cardiovascular disease (ASCVD) stands as the leading cause of mortality worldwide. At its core lies a progressive process of atherosclerosis, influenced by multiple factors. Among them, lifestyle-related factors are highlighted, with inadequate diet being one of the foremost, alongside factors such as cigarette smoking, low physical activity, and sleep deprivation. Another substantial group of risk factors comprises comorbidities. Amongst others, conditions such as hypertension, diabetes mellitus (DM), chronic kidney disease (CKD), or familial hypercholesterolemia (FH) are included here. Extremely significant in the context of halting progression is counteracting the mentioned risk factors, including through treatment of the underlying disease. What is more, in recent years, there has been increasing attention paid to perceiving atherosclerosis as an inflammation-related disease. Consequently, efforts are directed towards exploring new anti-inflammatory medications to limit ASCVD progression. Simultaneously, research is underway to identify biomarkers capable of providing insights into the ongoing process of atherosclerotic plaque formation. The aim of this study is to provide a broader perspective on ASCVD, particularly focusing on its characteristics, traditional and novel treatment methods, and biomarkers that can facilitate its early detection.


Atherosclerosis , Biomarkers , Humans , Atherosclerosis/etiology , Atherosclerosis/metabolism , Risk Factors , Inflammation
3.
Nutrients ; 16(2)2024 Jan 19.
Article En | MEDLINE | ID: mdl-38276546

Many researchers propose manipulating microbiota to prevent and treat related diseases. The brain-gut axis is an object that remains the target of modern research, and it is not without reason that many researchers enrich it with microbiota and diet in its name. Numerous connections and mutual correlations have become the basis for seeking answers to many questions related to pathology as well as human physiology. Disorders of this homeostasis as well as dysbiosis itself accompany neurodegenerative diseases such as Alzheimer's and Parkinson's. Heavily dependent on external factors, modulation of the gut microbiome represents an opportunity to advance the treatment of neurodegenerative diseases. Probiotic interventions, synbiotic interventions, or fecal transplantation can undoubtedly support the biotherapeutic process. A special role is played by diet, which provides metabolites that directly affect the body and the microbiota. A holistic view of the human organism is therefore essential.


Alzheimer Disease , Gastrointestinal Microbiome , Microbiota , Parkinson Disease , Humans , Parkinson Disease/therapy , Diet , Dysbiosis , Brain
...