Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
EMBO J ; 43(12): 2397-2423, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760575

ABSTRACT

The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1 , Decitabine , Ubiquitin-Protein Ligases , Decitabine/pharmacology , Humans , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , DNA Methylation/drug effects , Antimetabolites, Antineoplastic/pharmacology , Animals , Sumoylation/drug effects
2.
Cell Death Dis ; 15(4): 262, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615026

ABSTRACT

Gliomas are among the most fatal tumors, and the available therapeutic options are very limited. Additionally, the blood-brain barrier (BBB) prevents most drugs from entering the brain. We designed and produced a ferritin-based stimuli-sensitive nanocarrier with high biocompatibility and water solubility. It can incorporate high amounts of the potent topoisomerase 1 inhibitor Genz-644282. Here, we show that this nanocarrier, named The-0504, can cross the BBB and specifically deliver the payload to gliomas that express high amounts of the ferritin/transferrin receptor TfR1 (CD71). Intranasal or intravenous administration of The-0504 both reduce tumor growth and improve the survival rate of glioma-bearing mice. However, nose-to-brain administration is a simpler and less invasive route that may spare most of the healthy tissues compared to intravenous injections. For this reason, the data reported here could pave the way towards a new, safe, and direct ferritin-based drug delivery method for brain diseases, especially brain tumors.


Subject(s)
Ferritins , Glioma , Animals , Mice , Survival Rate , Glioma/drug therapy , Brain , Blood-Brain Barrier
3.
Nat Cell Biol ; 26(5): 797-810, 2024 May.
Article in English | MEDLINE | ID: mdl-38600235

ABSTRACT

Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.


Subject(s)
Cockayne Syndrome , DNA Helicases , DNA Repair Enzymes , DNA Repair , Poly-ADP-Ribose Binding Proteins , RNA Polymerase II , Humans , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , Cockayne Syndrome/pathology , DNA Adducts/metabolism , DNA Adducts/genetics , DNA Damage , DNA Helicases/metabolism , DNA Helicases/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Excision Repair , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Receptors, Interleukin-17 , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Transcription Factors , Transcription, Genetic , Ubiquitination , Ultraviolet Rays
4.
Cell Death Dis ; 15(3): 210, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480690

ABSTRACT

In recent years, several studies described the close relationship between the composition of gut microbiota and brain functions, highlighting the importance of gut-derived metabolites in mediating neuronal and glial cells cross-talk in physiological and pathological condition. Gut dysbiosis may affects cerebral tumors growth and progression, but the specific metabolites involved in this modulation have not been identified yet. Using a syngeneic mouse model of glioma, we have investigated the role of dysbiosis induced by the administration of non-absorbable antibiotics on mouse metabolome and on tumor microenvironment. We report that antibiotics treatment induced: (1) alteration of the gut and brain metabolome profiles; (2) modeling of tumor microenvironment toward a pro-angiogenic phenotype in which microglia and glioma cells are actively involved; (3) increased glioma stemness; (4) trans-differentiation of glioma cells into endothelial precursor cells, thus increasing vasculogenesis. We propose glycine as a metabolite that, in ABX-induced dysbiosis, shapes brain microenvironment and contributes to glioma growth and progression.


Subject(s)
Brain Neoplasms , Glioma , Mice , Animals , Dysbiosis , Glioma/pathology , Anti-Bacterial Agents/adverse effects , Brain/metabolism , Brain Neoplasms/pathology , Tumor Microenvironment
5.
Front Cell Neurosci ; 18: 1354259, 2024.
Article in English | MEDLINE | ID: mdl-38419654

ABSTRACT

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by elusive underlying mechanisms. Recent attention has focused on the involvement of astrocytes and microglia in ASD pathology. These glial cells play pivotal roles in maintaining neuronal homeostasis, including the regulation of metabolism. Emerging evidence suggests a potential association between ASD and inborn errors of metabolism. Therefore, gaining a comprehensive understanding of the functions of microglia and astrocytes in ASD is crucial for the development of effective therapeutic interventions. This review aims to provide a summary of the metabolism of astrocytes and microglia during post-natal development and the evidence of disrupted metabolic pathways in ASD, with particular emphasis on those potentially important for the regulation of neuronal post-natal maturation by astrocytes and microglia.

6.
Sci Adv ; 9(49): eadl2108, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38055822

ABSTRACT

The catalytic cycle of topoisomerase 2 (TOP2) enzymes proceeds via a transient DNA double-strand break (DSB) intermediate termed the TOP2 cleavage complex (TOP2cc), in which the TOP2 protein is covalently bound to DNA. Anticancer agents such as etoposide operate by stabilizing TOP2ccs, ultimately generating genotoxic TOP2-DNA protein cross-links that require processing and repair. Here, we identify RAD54 like 2 (RAD54L2) as a factor promoting TOP2cc resolution. We demonstrate that RAD54L2 acts through a novel mechanism together with zinc finger protein associated with tyrosyl-DNA phosphodiesterase 2 (TDP2) and TOP2 (ZATT/ZNF451) and independent of TDP2. Our work suggests a model wherein RAD54L2 recognizes sumoylated TOP2 and, using its ATPase activity, promotes TOP2cc resolution and prevents DSB exposure. These findings suggest RAD54L2-mediated TOP2cc resolution as a potential mechanism for cancer therapy resistance and highlight RAD54L2 as an attractive candidate for drug discovery.


Subject(s)
DNA Adducts , DNA-Binding Proteins , Humans , DNA Adducts/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Phosphoric Diester Hydrolases/genetics , DNA Topoisomerases, Type II/genetics , DNA/genetics , Genomic Instability , DNA Helicases/genetics
7.
Int J Mol Sci ; 24(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37108181

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and aggressive type of malignant primary brain tumor, and it is characterized by a high recurrence incidence and poor prognosis due to the presence of a highly heterogeneous mass of stem cells with self-renewal capacity and stemness maintenance ability. In recent years, the epigenetic landscape of GBM has been explored and many epigenetic alterations have been investigated. Among the investigated epigenetic abnormalities, the bromodomain and extra-terminal domain (BET) chromatin readers have been found to be significantly overexpressed in GBM. In this work, we investigated the effects of BET protein inhibition on GBM cell reprogramming. We found that the pan-BET pharmacological inhibitor JQ1 was able to promote a differentiation program in GBM cells, thus impairing cell proliferation and enhancing the toxicity of the drug Temozolomide (TMZ). Notably, the pro-differentiation capability of JQ1 was prevented in autophagy-defective models, suggesting that autophagy activation is necessary for BET protein activity in regulating glioma cell fate. Given the growing interest in epigenetic therapy, our results further support the possibility of introducing a BET-based approach in GBM clinical management.


Subject(s)
Glioblastoma , Humans , Glioblastoma/metabolism , Proteins/therapeutic use , Temozolomide/pharmacology , Temozolomide/therapeutic use , Cell Differentiation , Autophagy , Cell Line, Tumor
8.
Front Mol Neurosci ; 16: 1333745, 2023.
Article in English | MEDLINE | ID: mdl-38292023

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective therapy, causing progressive loss of motor neurons in the spinal cord, brainstem, and motor cortex. Regardless of its genetic or sporadic origin, there is currently no cure for ALS or therapy that can reverse or control its progression. In the present study, taking advantage of a human superoxide dismutase-1 mutant (hSOD1-G93A) mouse that recapitulates key pathological features of human ALS, we investigated the possible role of voltage-gated potassium channel Kv1.3 in disease progression. We found that chronic administration of the brain-penetrant Kv1.3 inhibitor, PAP-1 (40 mg/Kg), in early symptomatic mice (i) improves motor deficits and prolongs survival of diseased mice (ii) reduces astrocyte reactivity, microglial Kv1.3 expression, and serum pro-inflammatory soluble factors (iii) improves structural mitochondrial deficits in motor neuron mitochondria (iv) restores mitochondrial respiratory dysfunction. Taken together, these findings underscore the potential significance of Kv1.3 activity as a contributing factor to the metabolic disturbances observed in ALS. Consequently, targeting Kv1.3 presents a promising avenue for modulating disease progression, shedding new light on potential therapeutic strategies for ALS.

9.
Front Immunol ; 13: 1011129, 2022.
Article in English | MEDLINE | ID: mdl-36426369

ABSTRACT

Microglial cells play pleiotropic homeostatic activities in the brain, during development and in adulthood. Microglia regulate synaptic activity and maturation, and continuously patrol brain parenchyma monitoring for and reacting to eventual alterations or damages. In the last two decades microglia were given a central role as an indicator to monitor the inflammatory state of brain parenchyma. However, the recent introduction of single cell scRNA analyses in several studies on the functional role of microglia, revealed a not-negligible spatio-temporal heterogeneity of microglial cell populations in the brain, both during healthy and in pathological conditions. Furthermore, the recent advances in the knowledge of the mechanisms involved in the modulation of cerebral activity induced by gut microbe-derived molecules open new perspectives for deciphering the role of microglial cells as possible mediators of these interactions. The aim of this review is to summarize the most recent studies correlating gut-derived molecules and vagal stimulation, as well as dysbiotic events, to alteration of brain functioning, and the contribution of microglial cells.


Subject(s)
Microbiota , Microglia , Microglia/physiology , Neurons/physiology , Brain , Homeostasis
11.
Commun Biol ; 5(1): 517, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35641653

ABSTRACT

Gut microorganisms and the products of their metabolism thoroughly affect host brain development, function and behavior. Since alterations of brain plasticity and cognition have been demonstrated upon motor, sensorial and social enrichment of the housing conditions, we hypothesized that gut microbiota and metabolome could be altered by environmental stimuli, providing part of the missing link among environmental signals and brain effects. In this preliminary study, metagenomic and metabolomic analyses of mice housed in different environmental conditions, standard and enriched, identify environment-specific microbial communities and metabolic profiles. We show that mice housed in an enriched environment have distinctive microbiota composition with a reduction in gut bacterial richness and biodiversity and are characterized by a metabolomic fingerprint with the increase of formate and acetate and the decrease of bile salts. We demonstrate that mice treated with a mixture of formate and acetate recapitulate some of the brain plasticity effects modulated by environmental enrichment, such as hippocampal neurogenesis, neurotrophin production, short-term plasticity and cognitive behaviors, that can be further exploited to decipher the mechanisms involved in experience-dependent brain plasticity.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Fatty Acids, Volatile , Formates , Metabolome , Mice
12.
Front Cell Neurosci ; 16: 1002487, 2022.
Article in English | MEDLINE | ID: mdl-36589283

ABSTRACT

Tumor associated macrophages (TAMs) are the mostprevalent cells recruited in the tumor microenvironment (TME). Once recruited, TAMs acquire a pro-tumor phenotype characterized by a typical morphology: ameboid in the tumor core and with larger soma and thick branches in the tumor periphery. Targeting TAMs by reverting them to an anti-tumor phenotype is a promising strategy for cancer immunotherapy. Taking advantage of Cx3cr1GFP/WT heterozygous mice implanted with murine glioma GL261-RFP cells we investigated the role of Ca2+-activated K+ channel (KCa3.1) on the phenotypic shift of TAMs at the late stage of glioma growth through in vivo two-photon imaging. We demonstrated that TAMs respond promptly to KCa3.1 inhibition using a selective inhibitor of the channel (TRAM-34) in a time-dependent manner by boosting ramified projections attributable to a less hypertrophic phenotype in the tumor core. We also revealed a selective effect of drug treatment by reducing both glioma cells and TAMs in the tumor core with no interference with surrounding cells. Taken together, our data indicate a TRAM-34-dependent progressive morphological transformation of TAMs toward a ramified and anti-tumor phenotype, suggesting that the timing of KCa3.1 inhibition is a key point to allow beneficial effects on TAMs.

13.
Biomolecules ; 11(12)2021 11 26.
Article in English | MEDLINE | ID: mdl-34944418

ABSTRACT

The growing interest in the role of microglia in the progression of many neurodegenerative diseases is developing in an ever-expedited manner, in part thanks to emergent new tools for studying the morphological and functional features of the CNS. The discovery of specific biomarkers of the microglia phenotype could find application in a wide range of human diseases, and creates opportunities for the discovery and development of tailored therapeutic interventions. Among these, recent studies highlight the pivotal role of the potassium channels in regulating microglial functions in physiological and pathological conditions such as Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. In this review, we summarize the current knowledge of the involvement of the microglial potassium channels in several neurodegenerative diseases and their role as modulators of microglial homeostasis and dysfunction in CNS disorders.


Subject(s)
Microglia/metabolism , Neurodegenerative Diseases/metabolism , Potassium Channels/metabolism , Animals , Biomarkers/metabolism , Disease Progression , Gene Expression Regulation , Homeostasis , Humans , Microglia/pathology
14.
Cells ; 10(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34685628

ABSTRACT

'Dysbiosis' of the adult gut microbiota, in response to challenges such as infection, altered diet, stress, and antibiotics treatment has been recently linked to pathological alteration of brain function and behavior. Moreover, gut microbiota composition constantly controls microglia maturation, as revealed by morphological observations and gene expression analysis. However, it is unclear whether microglia functional properties and crosstalk with neurons, known to shape and modulate synaptic development and function, are influenced by the gut microbiota. Here, we investigated how antibiotic-mediated alteration of the gut microbiota influences microglial and neuronal functions in adult mice hippocampus. Hippocampal microglia from adult mice treated with oral antibiotics exhibited increased microglia density, altered basal patrolling activity, and impaired process rearrangement in response to damage. Patch clamp recordings at CA3-CA1 synapses revealed that antibiotics treatment alters neuronal functions, reducing spontaneous postsynaptic glutamatergic currents and decreasing synaptic connectivity, without reducing dendritic spines density. Antibiotics treatment was unable to modulate synaptic function in CX3CR1-deficient mice, pointing to an involvement of microglia-neuron crosstalk through the CX3CL1/CX3CR1 axis in the effect of dysbiosis on neuronal functions. Together, our findings show that antibiotic alteration of gut microbiota impairs synaptic efficacy, suggesting that CX3CL1/CX3CR1 signaling supporting microglia is a major player in in the gut-brain axis, and in particular in the gut microbiota-to-neuron communication pathway.


Subject(s)
Anti-Bacterial Agents/pharmacology , Hippocampus/pathology , Microglia/metabolism , Synapses/metabolism , Animals , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/metabolism , Gene Expression Regulation/drug effects , Glutamic Acid/metabolism , Inflammation/genetics , Mice , Microglia/drug effects , Neurons/drug effects , Neurons/metabolism , Signal Transduction/drug effects , Synapses/drug effects , Synaptic Transmission/drug effects
15.
Cancers (Basel) ; 13(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199968

ABSTRACT

Glioblastoma (GBM) is the most aggressive form of glioma tumor in adult brain. Among the numerous factors responsible for GBM cell proliferation and invasion, neurotransmitters such as dopamine, serotonin and glutamate can play key roles. Studies performed in mice housed in germ-free (GF) conditions demonstrated the relevance of the gut-brain axis in a number of physiological and pathological conditions. The gut-brain communication is made possible by vagal/nervous and blood/lymphatic routes and pave the way for reciprocal modulation of functions. The gut microbiota produces and consumes a wide range of molecules, including neurotransmitters (dopamine, norepinephrine, serotonin, gamma-aminobutyric acid [GABA], and glutamate) that reach their cellular targets through the bloodstream. Growing evidence in animals suggests that modulation of these neurotransmitters by the microbiota impacts host neurophysiology and behavior, and affects neural cell progenitors and glial cells, along with having effects on tumor cell growth. In this review we propose a new perspective connecting neurotransmitter modulation by gut microbiota to glioma progression.

16.
Cell Death Dis ; 11(10): 861, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060591

ABSTRACT

Dysregulation of calcium signaling is emerging as a key feature in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), and targeting this process may be therapeutically beneficial. Under this perspective, it is important to study proteins that regulate calcium homeostasis in the cell. Sorcin is one of the most expressed calcium-binding proteins in the human brain; its overexpression increases endoplasmic reticulum (ER) calcium concentration and decreases ER stress in the heart and in other cellular types. Sorcin has been hypothesized to be involved in neurodegenerative diseases, since it may counteract the increased cytosolic calcium levels associated with neurodegeneration. In the present work, we show that Sorcin expression levels are strongly increased in cellular, animal, and human models of AD, PD, and HD, vs. normal cells. Sorcin partially colocalizes with RyRs in neurons and microglia cells; functional experiments with microsomes containing high amounts of RyR2 and RyR3, respectively, show that Sorcin is able to regulate these ER calcium channels. The molecular basis of the interaction of Sorcin with RyR2 and RyR3 is demonstrated by SPR. Sorcin also interacts with other ER proteins as SERCA2 and Sigma-1 receptor in a calcium-dependent fashion. We also show that Sorcin regulates ER calcium transients: Sorcin increases the velocity of ER calcium uptake (increasing SERCA activity). The data presented here demonstrate that Sorcin may represent both a novel early marker of neurodegenerative diseases and a response to cellular stress dependent on neurodegeneration.


Subject(s)
Calcium Signaling , Calcium-Binding Proteins/metabolism , Endoplasmic Reticulum Stress , Neurodegenerative Diseases/metabolism , Animals , Biomarkers, Tumor/metabolism , Calcium-Binding Proteins/biosynthesis , Calcium-Binding Proteins/isolation & purification , Cell Line, Tumor , Cells, Cultured , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , HeLa Cells , Humans , Mice , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Ryanodine Receptor Calcium Release Channel/metabolism , Transfection
17.
Adv Exp Med Biol ; 1202: 281-298, 2020.
Article in English | MEDLINE | ID: mdl-32034719

ABSTRACT

In this chapter we describe the state of the art knowledge of the role played by myeloid cells in promoting and supporting the growth and the invasive properties of a deadly brain tumor, glioblastoma. We provide a review of the works describing the intercellular communication among glioma and associated microglia/macrophage cells (GAMs) using in vitro cellular models derived from mice, rats and human patients and in vivo animal models using syngeneic or xenogeneic experimental systems. Special emphasis will be given to 1) the timing alteration of brain microenvironment under the influence of glioma, 2) the bidirectional communication among tumor and GAMs, 3) possible approaches to interfere with or to guide these interactions, with the aim to identify molecular and cellular targets which could revert or delay the vicious cycle that favors tumor biology.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Macrophages/pathology , Microglia/pathology , Tumor Microenvironment , Animals , Humans
18.
Eur J Immunol ; 50(5): 705-711, 2020 05.
Article in English | MEDLINE | ID: mdl-32034922

ABSTRACT

Glioma is a CNS tumor with few therapeutic options. Recently, host microbiota has been involved in the immune modulation of different tumors, but no data are available on the possible effects of the gut-immune axis on brain tumors. Here, we investigated the effect of gut microbiota alteration in a syngeneic (GL261) mouse model of glioma, treating mice with two antibiotics (ABX) and evaluating the effects on tumor growth, microbe composition, natural killer (NK) cells and microglia phenotype. We report that ABX treatment (i) altered the intestinal microbiota at family level, (ii) reduced cytotoxic NK cell subsets, and (iii) altered the expression of inflammatory and homeostatic proteins in microglia. All these findings could contribute to the increased growth of intracranial glioma that was observed after ABX treatment. These results demonstrate that chronic ABX administration alters microbiota composition and contributes to modulate brain immune state paving the way to glioma growth.


Subject(s)
Anti-Bacterial Agents/adverse effects , Brain Neoplasms/microbiology , Gastrointestinal Microbiome/drug effects , Glioma/microbiology , Killer Cells, Natural/drug effects , Microglia/drug effects , Animals , Bacterial Typing Techniques , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , DNA, Bacterial/genetics , Disease Models, Animal , Disease Progression , Gastrointestinal Microbiome/genetics , Gentamicins/adverse effects , Glioma/immunology , Glioma/pathology , Humans , Immunologic Surveillance , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/immunology , Microglia/pathology , Neoplasm Transplantation , Phylogeny , Tumor Burden/drug effects , Vancomycin/adverse effects
19.
Cell Commun Signal ; 17(1): 108, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31455353

ABSTRACT

BACKGROUND: Glioma is the most common and primary brain tumors in adults. Despite the available multimodal therapies, glioma patients appear to have a poor prognosis. The Hedgehog (Hh) signaling is involved in tumorigenesis and emerged as a promising target for brain tumors. Glabrescione B (GlaB) has been recently identified as the first direct inhibitor of Gli1, the downstream effector of the pathway. METHODS: We established the overexpression of Gli1 in murine glioma cells (GL261) and GlaB effect on cell viability. We used 1H-nuclear magnetic resonance (NMR) metabolomic approach to obtain informative metabolic snapshots of GL261 cells acquired at different time points during GlaB treatment. The activation of AMP activated protein Kinase (AMPK) induced by GlaB was established by western blot. After the orthotopic GL261 cells injection in the right striatum of C57BL6 mice and the intranasal (IN) GlaB/mPEG5kDa-Cholane treatment, the tumor growth was evaluated. The High Performance Liquid Chromatography (HPLC) combined with Mass Spectrometry (MS) was used to quantify GlaB in brain extracts of treated mice. RESULTS: We found that GlaB affected the growth of murine glioma cells both in vitro and in vivo animal model. Using an untargeted 1H-NMR metabolomic approach, we found that GlaB stimulated the glycolytic metabolism in glioma, increasing lactate production. The high glycolytic rate could in part support the cytotoxic effects of GlaB, since the simultaneous blockade of lactate efflux with α-cyano-4-hydroxycinnamic acid (ACCA) affected glioma cell growth. According to the metabolomic data, we found that GlaB increased the phosphorylation of AMPK, a cellular energy sensor involved in the anabolic-to-catabolic transition. CONCLUSIONS: Our results indicate that GlaB inhibits glioma cell growth and exacerbates Warburg effect, increasing lactate production. In addition, the simultaneous blockade of Gli1 and lactate efflux amplifies the anti-tumor effect in vivo, providing new potential therapeutic strategy for this brain tumor.


Subject(s)
Chromones/pharmacology , Glioma/drug therapy , Glioma/metabolism , Metabolomics , Animals , Cell Proliferation/drug effects , Glioma/diagnosis , Glycolysis/drug effects , Humans , Male , Mice , Neoplasms, Experimental/diagnosis , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Proton Magnetic Resonance Spectroscopy , Signal Transduction/drug effects , Tumor Cells, Cultured
20.
Cancers (Basel) ; 11(3)2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30813636

ABSTRACT

Glioblastoma (GBM) is a deadly brain tumor, with fast recurrence even after surgical intervention, radio- and chemotherapies. One of the reasons for relapse is the early invasion of surrounding brain parenchyma by GBM, rendering tumor eradication difficult. Recent studies demonstrate that, in addition to eliminate possible residual tumoral cells after surgery, radiation stimulates the infiltrative behavior of GBM cells. The intermediate conductance of Ca2+-activated potassium channels (KCa3.1) play an important role in regulating the migration of GBM. Here, we show that high dose radiation of patient-derived GBM cells increases their invasion, and induces the transcription of key genes related to these functions, including the IL-4/IL-4R pair. In addition, we demonstrate that radiation increases the expression of KCa3.1 channels, and that their pharmacological inhibition counteracts the pro-invasive phenotype induced by radiation in tumor cells. Our data describe a possible approach to treat tumor resistance that follows radiation therapy in GBM patients.

SELECTION OF CITATIONS
SEARCH DETAIL