Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979330

ABSTRACT

Variants in the poorly characterised oncoprotein, MORC2, a chromatin remodelling ATPase, lead to defects in epigenetic regulation and DNA damage response. The C-terminal domain (CTD) of MORC2, frequently phosphorylated in DNA damage, promotes cancer progression, but its role in chromatin remodelling remains unclear. Here, we report a molecular characterisation of full-length, phosphorylated MORC2, demonstrating its preference for binding open chromatin and functioning as a DNA sliding clamp. We identified a phosphate interacting motif within the CTD that dictates ATP hydrolysis rate and cooperative DNA binding. The DNA binding impacts several structural domains within the ATPase region. We provide the first visual proof that MORC2 induces chromatin remodelling through ATP hydrolysis-dependent DNA compaction, regulated by its phosphorylation state. These findings highlight phosphorylation of MORC2 CTD as a key modulator of chromatin remodelling, presenting it as a potential therapeutic target.

2.
Proc Natl Acad Sci U S A ; 120(29): e2301199120, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37450495

ABSTRACT

Previously, we showed that the nuclear import receptor Importin-9 wraps around the H2A-H2B core to chaperone and transport it from the cytoplasm to the nucleus. However, unlike most nuclear import systems where RanGTP dissociates cargoes from their importins, RanGTP binds stably to the Importin-9•H2A-H2B complex, and formation of the ternary RanGTP•Importin-9•H2A-H2B complex facilitates H2A-H2B release to the assembling nucleosome. It was unclear how RanGTP and the cargo H2A-H2B can bind simultaneously to an importin, and how interactions of the three components position H2A-H2B for release. Here, we show cryo-EM structures of Importin-9•RanGTP and of its yeast homolog Kap114, including Kap114•RanGTP, Kap114•H2A-H2B, and RanGTP•Kap114•H2A-H2B, to explain how the conserved Kap114 binds H2A-H2B and RanGTP simultaneously and how the GTPase primes histone transfer to the nucleosome. In the ternary complex, RanGTP binds to the N-terminal repeats of Kap114 in the same manner as in the Kap114/Importin-9•RanGTP complex, and H2A-H2B binds via its acidic patch to the Kap114 C-terminal repeats much like in the Kap114/Importin-9•H2A-H2B complex. Ran binds to a different conformation of Kap114 in the ternary RanGTP•Kap114•H2A-H2B complex. Here, Kap114 no longer contacts the H2A-H2B surface proximal to the H2A docking domain that drives nucleosome assembly, positioning it for transfer to the assembling nucleosome or to dedicated H2A-H2B chaperones in the nucleus.


Subject(s)
Nucleosomes , Saccharomyces cerevisiae Proteins , Nucleosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Protein Binding , Karyopherins/metabolism , Saccharomyces cerevisiae/metabolism , Molecular Chaperones/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
3.
Structure ; 31(8): 903-911.e3, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37379840

ABSTRACT

Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP is insufficient to release H2A-H2B. The resulting stable RanGTP·Imp9·H2A-H2B complex gains nucleosome assembly activity with H2A-H2B able to be deposited into an assembling nucleosome in vitro. Using hydrogen-deuterium exchange coupled with mass spectrometry (HDX), we show that Imp9 stabilizes H2A-H2B beyond the direct-binding site, like other histone chaperones. HDX also shows that binding of RanGTP releases H2A-H2B contacts at Imp9 HEAT repeats 4-5, but not 18-19. DNA- and histone-binding surfaces of H2A-H2B are exposed in the ternary complex, facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. Imp9 thus provides a connection between the nuclear import of H2A-H2B and its deposition into chromatin.


Subject(s)
Histones , Nucleosomes , Histones/metabolism , Nucleosome Assembly Protein 1/genetics , Chromatin , Karyopherins/metabolism
4.
Elife ; 122023 03 21.
Article in English | MEDLINE | ID: mdl-36942851

ABSTRACT

To address the ongoing SARS-CoV-2 pandemic and prepare for future coronavirus outbreaks, understanding the protective potential of epitopes conserved across SARS-CoV-2 variants and coronavirus lineages is essential. We describe a highly conserved, conformational S2 domain epitope present only in the prefusion core of ß-coronaviruses: SARS-CoV-2 S2 apex residues 980-1006 in the flexible hinge. Antibody RAY53 binds the native hinge in MERS-CoV and SARS-CoV-2 spikes on the surface of mammalian cells and mediates antibody-dependent cellular phagocytosis and cytotoxicity against SARS-CoV-2 spike in vitro. Hinge epitope mutations that ablate antibody binding compromise pseudovirus infectivity, but changes elsewhere that affect spike opening dynamics, including those found in Omicron BA.1, occlude the epitope and may evade pre-existing serum antibodies targeting the S2 core. This work defines a third class of S2 antibody while providing insights into the potency and limitations of S2 core epitope targeting.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , Antibodies , Epitopes , Antibodies, Viral , Antibodies, Neutralizing , Mammals
5.
bioRxiv ; 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36747879

ABSTRACT

Padavannil et al. 2019 show that Importin-9 (Imp9) transports Histones H2A-H2B from the cytoplasm to the nucleus using a non-canonical mechanism whereby binding of a GTP-bound Ran GTPase (RanGTP) fails to evict the H2A-H2B cargo. Instead, a stable complex forms, comprised of equimolar RanGTP, Imp9, and H2A-H2B. Unlike the binary Imp9•H2A-H2B complex, this RanGTP•Imp9•H2A-H2B ternary complex can release H2A-H2B to an assembling nucleosome. Here, we define the molecular basis for this RanGTP-activated nucleosome assembly by Imp9. We use hydrogen-deuterium exchange coupled with mass spectrometry and compare the dynamics and interfaces of the RanGTP•Imp9•H2A-H2B ternary complex to those in the Imp9•H2A-H2B or Imp9•RanGTP binary complexes. Our data are consistent with the Imp9•H2A-H2B structure by Padavannil et al. 2019 showing that Imp9 HEAT repeats 4-5 and 18-19 contact H2A-H2B, as well as many homologous importin•RanGTP structures showing that importin HEAT repeats 1 and 3, and the h8 loop, contact RanGTP. We show that Imp9 stabilizes H2A-H2B beyond the direct binding site, similar to other histone chaperones. Importantly, we reveal that binding of RanGTP releases H2A-H2B interaction at Imp9 HEAT repeats 4-5, but not 18-19. This exposes DNA- and histone-binding surfaces of H2A-H2B, thereby facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. This may ensure that H2A-H2B is only released in high RanGTP concentrations near chromatin. We delineate the molecular link between the nuclear import of H2A-H2B and its deposition into chromatin by Imp9. Significance: Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP alone is insufficient to release H2A-H2B. The resulting stable RanGTP•Imp9•H2A-H2B complex gains nucleosome assembly activity as H2A-H2B can be deposited onto an assembling nucleosome. We show that H2A-H2B is allosterically stabilized via interactions with both N- and C-terminal portions of Imp9, reinforcing its chaperone-like behavior. RanGTP binding causes H2A-H2B release from the N-terminal portion of Imp9 only. The newly-exposed H2A-H2B surfaces can interact with DNA or H3-H4 in nucleosome assembly. Imp9 thus plays a multi-faceted role in histone import, storage, and deposition regulated by RanGTP, controlling histone supply in the nucleus and to chromatin.

6.
Nat Catal ; 5(10): 952-967, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36465553

ABSTRACT

The Trp metabolite kynurenine (KYN) accumulates in numerous solid tumours and mediates potent immunosuppression. Bacterial kynureninases (KYNases), which preferentially degrade kynurenine, can relieve immunosuppression in multiple cancer models, but immunogenicity concerns preclude their clinical use, while the human enzyme (HsKYNase) has very low activity for kynurenine and shows no therapeutic effect. Using fitness selections, we evolved a HsKYNase variant with 27-fold higher activity, beyond which exploration of >30 evolutionary trajectories involving the interrogation of >109 variants led to no further improvements. Introduction of two amino acid substitutions conserved in bacterial KYNases reduced enzyme fitness but potentiated rapid evolution of variants with ~500-fold improved activity and reversed substrate specificity, resulting in an enzyme capable of mediating strong anti-tumour effects in mice. Pre-steady-state kinetics revealed a switch in rate-determining step attributable to changes in both enzyme structure and conformational dynamics. Apart from its clinical significance, our work highlights how rationally designed substitutions can potentiate trajectories that overcome barriers in protein evolution.

7.
Methods Enzymol ; 673: 475-516, 2022.
Article in English | MEDLINE | ID: mdl-35965017

ABSTRACT

Hydrogen deuterium exchange coupled to mass spectrometry (HDX-MS) is a valuable technique to investigate the dynamics of protein systems. The approach compares the deuterium uptake of protein backbone amides under multiple conditions to characterize protein conformation and interaction. HDX-MS is versatile and can be applied to diverse ligands, however, challenges remain when it comes to exploring complexes containing nucleic acids. In this chapter, we present procedures for the optimization and application of HDX-MS to studying RNA-binding proteins and use the RNA helicase Mtr4 as a demonstrative example. We highlight considerations in designing on-exchange, bottom-up, comparative studies on proteins with RNA. Our protocol details preliminary testing and optimization of experimental parameters. Difficulties arising from the inclusion of RNA, such as signal repression and sample carryover, are addressed. We discuss how chromatography parameters can be adjusted depending on the issues presented by the RNA, emphasizing reproducible peptide recovery in the absence and presence of RNA. Methods for visualization of HDX data integrated with statistical analysis are also reviewed with examples. These protocols can be applied to future studies of various RNA-protein complexes.


Subject(s)
Deuterium Exchange Measurement , Hydrogen Deuterium Exchange-Mass Spectrometry , Deuterium/chemistry , Deuterium Exchange Measurement/methods , Hydrogen/chemistry , Mass Spectrometry/methods , Proteins/chemistry , RNA
8.
Proc Natl Acad Sci U S A ; 119(23): e2118979119, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35658075

ABSTRACT

Dynamic motions of enzymes occurring on a broad range of timescales play a pivotal role in all steps of the reaction pathway, including substrate binding, catalysis, and product release. However, it is unknown whether structural information related to conformational flexibility can be exploited for the directed evolution of enzymes with higher catalytic activity. Here, we show that mutagenesis of residues exclusively located at flexible regions distal to the active site of Homo sapiens kynureninase (HsKYNase) resulted in the isolation of a variant (BF-HsKYNase) in which the rate of the chemical step toward kynurenine was increased by 45-fold. Mechanistic pre­steady-state kinetic analysis of the wild type and the evolved enzyme shed light on the underlying effects of distal mutations (>10 Å from the active site) on the rate-limiting step of the catalytic cycle. Hydrogen-deuterium exchange coupled to mass spectrometry and molecular dynamics simulations revealed that the amino acid substitutions in BF-HsKYNase allosterically affect the flexibility of the pyridoxal-5'-phosphate (PLP) binding pocket, thereby impacting the rate of chemistry, presumably by altering the conformational ensemble and sampling states more favorable to the catalyzed reaction.


Subject(s)
Catalysis , Enzymes , Evolution, Molecular , Amino Acid Substitution , Catalytic Domain , Enzymes/genetics , Enzymes/metabolism , Humans , Hydrolases/genetics , Hydrolases/metabolism , Immunotherapy , Kinetics , Neoplasms/therapy
9.
Nucleic Acids Res ; 50(7): 4042-4053, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35380691

ABSTRACT

Mtr4 is a eukaryotic RNA helicase required for RNA decay by the nuclear exosome. Previous studies have shown how RNA en route to the exosome threads through the highly conserved helicase core of Mtr4. Mtr4 also contains an arch domain, although details of potential interactions between the arch and RNA have been elusive. To understand the interaction of Saccharomyces cerevisiae Mtr4 with various RNAs, we have characterized RNA binding in solution using hydrogen-deuterium exchange mass spectrometry, and affinity and unwinding assays. We have identified RNA interactions within the helicase core that are consistent with existing structures and do not vary between tRNA, single-stranded RNA and double-stranded RNA constructs. We have also identified novel RNA interactions with a region of the arch known as the fist or KOW. These interactions are important for RNA unwinding and vary in strength depending on RNA structure and length. They account for Mtr4 discrimination between different RNAs. These interactions further drive Mtr4 to adopt a closed conformation characterized by reduced dynamics of the arch arm and intra-domain contacts between the fist and helicase core.


Subject(s)
DEAD-box RNA Helicases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , DEAD-box RNA Helicases/metabolism , DNA Helicases/metabolism , Deuterium/metabolism , Deuterium Exchange Measurement , Mass Spectrometry , RNA/genetics , RNA/metabolism , RNA Helicases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
10.
RSC Chem Biol ; 2(3): 830-834, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-34212150

ABSTRACT

Human phenol sulfotransferases mediate the transfer of a sulfuryl moiety from the activated sulfate donor PAPS to hydroxy-containing substrates, altering substrate solubility and charge to affect phase II metabolism and cell signaling. Here, we present the development, computational modeling, in vitro enzymology, and biological application of STS-3, an activity-based fluorescent sensor for the SULT1A1 isoform.

11.
Sci Rep ; 11(1): 15109, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34302022

ABSTRACT

Virus-like particles are an emerging class of nano-biotechnology with the Tobacco Mosaic Virus (TMV) having found a wide range of applications in imaging, drug delivery, and vaccine development. TMV is typically produced in planta, and, as an RNA virus, is highly susceptible to natural mutation that may impact its properties. Over the course of 2 years, from 2018 until 2020, our laboratory followed a spontaneous point mutation in the TMV coat protein-first observed as a 30 Da difference in electrospray ionization mass spectrometry (ESI-MS). The mutation would have been difficult to notice by electrophoretic mobility in agarose or SDS-PAGE and does not alter viral morphology as assessed by transmission electron microscopy. The mutation responsible for the 30 Da difference between the wild-type (wTMV) and mutant (mTMV) coat proteins was identified by a bottom-up proteomic approach as a change from glycine to serine at position 155 based on collision-induced dissociation data. Since residue 155 is located on the outer surface of the TMV rod, it is feasible that the mutation alters TMV surface chemistry. However, enzyme-linked immunosorbent assays found no difference in binding between mTMV and wTMV. Functionalization of a nearby residue, tyrosine 139, with diazonium salt, also appears unaffected. Overall, this study highlights the necessity of standard workflows to quality-control viral stocks. We suggest that ESI-MS is a straightforward and low-cost way to identify emerging mutants in coat proteins.


Subject(s)
Mutation/genetics , Tobacco Mosaic Virus/genetics , Capsid/metabolism , Laboratories , Mutagenesis/genetics , Proteomics/methods , RNA, Viral/genetics , Virus Replication/genetics
12.
Bioinformatics ; 37(13): 1926-1927, 2021 07 27.
Article in English | MEDLINE | ID: mdl-33079991

ABSTRACT

SUMMARY: Hydrogen-Deuterium eXchange coupled to mass spectrometry is a powerful tool for the analysis of protein dynamics and interactions. Bottom-up experiments looking at deuterium uptake differences between various conditions are the most common. These produce multi-dimensional data that can be challenging to depict in a single visual format. Each user must also set significance thresholds to define meaningful differences and make these apparent in data presentation. To assist in this process, we have created HD-eXplosion, an open-source, web-based application for the generation of chiclet and volcano plots with statistical filters. HD-eXplosion fills a void in available software packages and produces customizable plots that are publication quality. AVAILABILITY AND IMPLEMENTATION: The HD-eXplosion application is available at http://hd-explosion.utdallas.edu. The source code can be found at https://github.com/HD-Explosion.


Subject(s)
Deuterium Exchange Measurement , Hydrogen , Deuterium , Explosions , Mass Spectrometry , Software
13.
ACS Chem Biol ; 15(12): 3159-3166, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33275413

ABSTRACT

Kynureninases (KYNases) are enzymes that play a key role in tryptophan catabolism through the degradation of intermediate kynurenine and 3'-hydroxy-kynurenine metabolites (KYN and OH-KYN, respectively). Bacterial KYNases exhibit high catalytic efficiency toward KYN and moderate activity toward OH-KYN, whereas animal KYNases are highly selective for OH-KYN, exhibiting only minimal activity toward the smaller KYN substrate. These differences reflect divergent pathways for KYN and OH-KYN utilization in the respective kingdoms. We examined the Homo sapiens and Pseudomonas fluorescens KYNases (HsKYNase and PfKYNase respectively) using pre-steady-state and hydrogen-deuterium exchange mass spectrometry (HDX-MS) methodologies. We discovered that the activity of HsKYNase critically depends on formation of hydrogen bonds with the hydroxyl group of OH-KYN to stabilize the entire active site and allow productive substrate turnover. With the preferred OH-KYN substrate, stabilization is observed at the substrate-binding site and the region surrounding the PLP cofactor. With the nonpreferred KYN substrate, less stabilization occurs, revealing a direct correlation with activity. This correlation holds true for PfKYNases; however there is only a modest stabilization at the substrate-binding site, suggesting that substrate discrimination is simply achieved by steric hindrance. We speculate that eukaryotic KYNases use dynamic mobility as a mechanism of substrate specificity to commit OH-KYN to nicotinamide synthesis and avoid futile hydrolysis of KYN. These findings have important ramifications for the engineering of HsKynase with high KYN activity as required for clinical applications in cancer immunotherapy. Our study shows how homologous enzymes with conserved active sites can use dynamics to discriminate between two highly similar substrates.


Subject(s)
Hydrolases/metabolism , Catalysis , Humans , Hydrolases/chemistry , Kinetics , Protein Conformation , Substrate Specificity
14.
J Med Chem ; 63(21): 12786-12798, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33119282

ABSTRACT

CK2α is a ubiquitous, well-studied kinase that is a target for small-molecule inhibition, for treatment of cancers. While many different classes of adenosine 5'-triphosphate (ATP)-competitive inhibitors have been described for CK2α, they tend to suffer from significant off-target activity and new approaches are needed. A series of inhibitors of CK2α has recently been described as allosteric, acting at a previously unidentified binding site. Given the similarity of these inhibitors to known ATP-competitive inhibitors, we have investigated them further. In our thorough structural and biophysical analyses, we have found no evidence that these inhibitors bind to the proposed allosteric site. Rather, we report crystal structures, competitive isothermal titration calorimetry (ITC) and NMR, hydrogen-deuterium exchange (HDX) mass spectrometry, and chemoinformatic analyses that all point to these compounds binding in the ATP pocket. Comparisons of our results and experimental approach with the data presented in the original report suggest that the primary reason for the disparity is nonspecific inhibition by aggregation.


Subject(s)
Protein Kinase Inhibitors/chemistry , Adenosine Triphosphate/metabolism , Allosteric Regulation , Allosteric Site , Binding, Competitive , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/genetics , Casein Kinase II/metabolism , Crystallography, X-Ray , Deuterium Exchange Measurement , Humans , Ligands , Molecular Dynamics Simulation , Naphthyridines/chemistry , Naphthyridines/metabolism , Nuclear Magnetic Resonance, Biomolecular , Phenazines , Protein Binding , Protein Kinase Inhibitors/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
15.
Life Sci Alliance ; 3(11)2020 11.
Article in English | MEDLINE | ID: mdl-32913112

ABSTRACT

Histone acetylation is one of many posttranslational modifications that affect nucleosome accessibility. Vps75 is a histone chaperone that stimulates Rtt109 acetyltransferase activity toward histones H3-H4 in yeast. In this study, we use sedimentation velocity and light scattering to characterize various Vps75-Rtt109 complexes, both with and without H3-H4. These complexes were previously ill-defined because of protein multivalency and oligomerization. We determine both relative and absolute stoichiometry and define the most pertinent and homogeneous complexes. We show that the Vps75 dimer contains two unequal binding sites for Rtt109, with the weaker binding site being dispensable for H3-H4 acetylation. We further show that the Vps75-Rtt109-(H3-H4) complex is in equilibrium between a 2:1:1 species and a 4:2:2 species. Using a dimerization mutant of H3, we show that this equilibrium is mediated by the four-helix bundle between the two copies of H3. We optimize the purity, yield, and homogeneity of Vps75-Rtt109 complexes and determine optimal conditions for solubility when H3-H4 is added. Our comprehensive biochemical and biophysical approach ultimately defines the large-scale preparation of Vps75-Rtt109-(H3-H4) complexes with precise stoichiometry. This is an essential prerequisite for ongoing high-resolution structural and functional analysis of this important multi-subunit complex.


Subject(s)
Histone Acetyltransferases/metabolism , Histones/chemistry , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Acetylation , Binding Sites , Cell Cycle Proteins/genetics , Crystallography, X-Ray/methods , Dimerization , Histone Acetyltransferases/genetics , Histone Acetyltransferases/physiology , Histone Chaperones/metabolism , Histones/genetics , Histones/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/physiology , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/physiology
16.
Methods ; 184: 93-101, 2020 12 01.
Article in English | MEDLINE | ID: mdl-31988003

ABSTRACT

Interactions between histones and their binding partners are an important aspect of chromatin biology. Determining the stoichiometry of histone-containing complexes is an important pre-requisite for performing in vitro biochemical, biophysical and structural analyses. In this article, we detail how Size Exclusion Chromatography (SEC) coupled to Multi-Angle Light Scattering (MALS) can be used to study histone chaperones and their complexes. Our protocol details system setup, sample preparation, data collection, and data interpretation. We provide tips on designing an informative SEC-MALS experiment, using histone chaperones Nap1 and Vps75 as demonstrative examples. We outline recommendations to overcome specific challenges such as protein oligomerization, heterogeneity, and non-specific binding. We find SEC-MALS to be a robust and user-friendly approach for characterizing histone-binding proteins and their complexes.


Subject(s)
Chromatography, Gel/methods , Light , Molecular Chaperones/analysis , Saccharomyces cerevisiae Proteins/analysis , Scattering, Radiation , tRNA Methyltransferases/analysis , Histones/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Aggregates , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
17.
Nature ; 577(7790): 426-431, 2020 01.
Article in English | MEDLINE | ID: mdl-31775157

ABSTRACT

The organization of genomic DNA into nucleosomes profoundly affects all DNA-related processes in eukaryotes. The histone chaperone known as 'facilitates chromatin transcription' (FACT1) (consisting of subunits SPT16 and SSRP1) promotes both disassembly and reassembly of nucleosomes during gene transcription, DNA replication and DNA repair2. However, the mechanism by which FACT causes these opposing outcomes is unknown. Here we report two cryo-electron-microscopic structures of human FACT in complex with partially assembled subnucleosomes, with supporting biochemical and hydrogen-deuterium exchange data. We find that FACT is engaged in extensive interactions with nucleosomal DNA and all histone variants. The large DNA-binding surface on FACT appears to be protected by the carboxy-terminal domains of both of its subunits, and this inhibition is released by interaction with H2A-H2B, allowing FACT-H2A-H2B to dock onto a complex containing DNA and histones H3 and H4 (ref. 3). SPT16 binds nucleosomal DNA and tethers H2A-H2B through its carboxy-terminal domain by acting as a placeholder for DNA. SSRP1 also contributes to DNA binding, and can assume two conformations, depending on whether a second H2A-H2B dimer is present. Our data suggest a compelling mechanism for how FACT maintains chromatin integrity during polymerase passage, by facilitating removal of the H2A-H2B dimer, stabilizing intermediate subnucleosomal states and promoting nucleosome reassembly. Our findings reconcile discrepancies regarding the many roles of FACT and underscore the dynamic interactions between histone chaperones and nucleosomes.


Subject(s)
Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/chemistry , High Mobility Group Proteins/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/metabolism , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , Histones/chemistry , Histones/metabolism , Humans , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary
18.
Biochemistry ; 58(43): 4337-4342, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31589416

ABSTRACT

In intravacuolar pathogens, iron is essential for growth and virulence. In Legionella pneumophila, a putative transmembrane protein inserted on the surface of the host pathogen-containing vacuole, IroT/MavN, facilitates intravacuolar iron acquisition from the host by an unknown mechanism, bypassing the problem of Fe(III) insolubility and mobilization. We developed a platform for purification and reconstitution of IroT in artificial lipid bilayer vesicles (proteoliposomes). By encapsulating the fluorescent reporter probe Fluozin-3, we reveal, by real-time metal transport assays, that IroT is a high-affinity iron transporter selective for Fe(II) over other essential transition metals. Mutational analysis reveals important residues in the transmembrane helices, soluble domains, and loops important for substrate recognition and translocation. The work establishes the substrate transport properties in a novel transporter family important for iron acquisition at the host-pathogen intravacuolar interface and provides chemical tools for a comparative investigation of the translocation properties in other iron transporter families.


Subject(s)
Bacterial Proteins/metabolism , Cation Transport Proteins/metabolism , Iron/metabolism , Legionella pneumophila/chemistry , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Fluorescent Dyes , Glycolipids/chemistry , Ion Transport , Kinetics , Mutation , Polycyclic Compounds , Protein Binding , Unilamellar Liposomes/chemistry
19.
Elife ; 82019 03 11.
Article in English | MEDLINE | ID: mdl-30855230

ABSTRACT

We report the crystal structure of nuclear import receptor Importin-9 bound to its cargo, the histones H2A-H2B. Importin-9 wraps around the core, globular region of H2A-H2B to form an extensive interface. The nature of this interface coupled with quantitative analysis of deletion mutants of H2A-H2B suggests that the NLS-like sequences in the H2A-H2B tails play a minor role in import. Importin-9•H2A-H2B is reminiscent of interactions between histones and histone chaperones in that it precludes H2A-H2B interactions with DNA and H3-H4 as seen in the nucleosome. Like many histone chaperones, which prevent inappropriate non-nucleosomal interactions, Importin-9 also sequesters H2A-H2B from DNA. Importin-9 appears to act as a storage chaperone for H2A-H2B while escorting it to the nucleus. Surprisingly, RanGTP does not dissociate Importin-9•H2A-H2B but assembles into a RanGTP•Importin-9•H2A-H2B complex. The presence of Ran in the complex, however, modulates Imp9-H2A-H2B interactions to facilitate its dissociation by DNA and assembly into a nucleosome.


Subject(s)
Histones/chemistry , Histones/metabolism , Karyopherins/chemistry , Karyopherins/metabolism , Active Transport, Cell Nucleus , Animals , Crystallography, X-Ray , DNA Mutational Analysis , Humans , Karyopherins/genetics , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Binding , Protein Conformation , Xenopus
20.
Biochemistry ; 58(2): 108-113, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30521320

ABSTRACT

Nucleosome assembly proteins (Naps) influence chromatin dynamics by directly binding to histones. Here we provide a comprehensive structural and biochemical analysis of a Nap protein from Caenorhabditis elegans (CeNap1). CeNap1 naturally lacks the acidic N-terminal tail and has a short C-terminal tail compared to many other Nap proteins. Comparison of CeNap1 with full length and tail-less constructs of Saccharomyces cerevisiae Nap1 uncovers the role of these tails in self-association, histone binding, and Nap competition with DNA for H2A-H2B. We find that the presence of tails influences the stoichiometry of H2A-H2B binding and is required to complete the interactions between H2A-H2B and DNA. The absolute stoichiometry of the Nap protein and H2A-H2B complex is 2:1 or 2:2, with only a very small population of higher-order oligomers occurring at 150 mM NaCl. We also show that H3-H4 binds differently than H2A-H2B and that an (H3-H4)2 tetramer can simultaneously bind two Nap2 protein homodimers.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Histones/metabolism , Nucleosome Assembly Protein 1/chemistry , Nucleosome Assembly Protein 1/metabolism , Animals , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Crystallography, X-Ray , Models, Molecular , Nucleosome Assembly Protein 1/genetics , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...