Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396833

ABSTRACT

Bradyrhizobium diazoefficiens can live inside soybean root nodules and in free-living conditions. In both states, when oxygen levels decrease, cells adjust their protein pools by gene transcription modulation. PhaR is a transcription factor involved in polyhydroxyalkanoate (PHA) metabolism but also plays a role in the microaerobic network of this bacterium. To deeply uncover the function of PhaR, we applied a multipronged approach, including the expression profile of a phaR mutant at the transcriptional and protein levels under microaerobic conditions, and the identification of direct targets and of proteins associated with PHA granules. Our results confirmed a pleiotropic function of PhaR, affecting several phenotypes, in addition to PHA cycle control. These include growth deficiency, regulation of carbon and nitrogen allocation, and bacterial motility. Interestingly, PhaR may also modulate the microoxic-responsive regulatory network by activating the expression of fixK2 and repressing nifA, both encoding two transcription factors relevant for microaerobic regulation. At the molecular level, two PhaR-binding motifs were predicted and direct control mediated by PhaR determined by protein-interaction assays revealed seven new direct targets for PhaR. Finally, among the proteins associated with PHA granules, we found PhaR, phasins, and other proteins, confirming a dual function of PhaR in microoxia.


Subject(s)
Bradyrhizobium , Polyhydroxyalkanoates , Bacterial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Polyhydroxyalkanoates/metabolism , Gene Expression Regulation, Bacterial
2.
ACS Omega ; 7(49): 44631-44642, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530317

ABSTRACT

Poly(amide-triazole) and poly(ester-triazole) synthesized from d-galactose as a renewable resource were applied for the synthesis of nanoparticles (NPs) by the emulsification/solvent evaporation method. The NPs were characterized as stable, spherical particles, and none of their components, including the stabilizer poly(vinyl alcohol), were cytotoxic for normal rat kidney cells. These NPs proved to be useful for the efficient encapsulation of cilostazol (CLZ), an antiplatelet and vasodilator drug currently used for the treatment of intermittent claudication, which is associated with undesired side-effects. In this context, the nanoencapsulation of CLZ was expected to improve its therapeutic administration. The carbohydrate-derived polymeric NPs were designed taking into account that the triazole rings of the polymer backbone could have attractive interactions with the tetrazole ring of CLZ. The activity of the nanoencapsulated CLZ was measured using a matrix metalloproteinase model in a lipopolysaccharide-induced inflammation system. Interestingly, the encapsulated drug exhibited enhanced anti-inflammatory activity in comparison with the free drug. The results are very promising since the stable, noncytotoxic NP systems efficiently reduced the inflammation response at low CLZ doses. In summary, the NPs were obtained through an innovative methodology that combines a carbohydrate-derived synthetic polymer, designed to interact with the drug, ease of preparation, adequate biological performance, and environmentally friendly production.

3.
Extremophiles ; 23(1): 91-99, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30328541

ABSTRACT

Environments co-contaminated with heavy metals and hydrocarbons have become an important problem worldwide, especially due to the effect of metals on hydrocarbon degrading microorganisms. Pseudomonas extremaustralis, a bacterium isolated from a pristine pond in Antarctica, showed high capabilities to cope with environmental stress and a very versatile metabolism that includes alkane degradation under microaerobic conditions. In this work, we analyzed P. extremaustralis' capability to resist high copper concentrations and the effect of copper presence in diesel biodegradation. We observed that P. extremaustralis resisted up to 4 mM CuSO4 in a rich medium such as LB. This copper resistance is sustained by the presence of the cus and cop operons together with other efflux systems and porins located in a single region in P. extremaustralis genome. When copper was present, diesel degradation was negatively affected, even though copper enhanced bacterial attachment to hydrocarbons. However, when a small amount of glucose (0.05% w/v) was added, the presence of CuSO4 enhanced alkane degradation. In addition, atomic force microscopy analysis showed that the presence of glucose decreased the negative effects produced by copper and diesel on the cell envelopes.


Subject(s)
Copper/metabolism , Environmental Pollutants/metabolism , Gasoline/microbiology , Pseudomonas/metabolism , Biodegradation, Environmental , Operon , Porins/metabolism , Pseudomonas/genetics , Pseudomonas/growth & development
4.
Appl Environ Microbiol ; 84(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30030227

ABSTRACT

Manipulation of global regulators is one of the strategies used for the construction of bacterial strains suitable for the synthesis of bioproducts. However, the pleiotropic effects of these regulators can vary under different conditions and are often strain dependent. This study analyzed the effects of ArcA, CreC, Cra, and Rob using single deletion mutants of the well-characterized and completely sequenced Escherichia coli strain BW25113. Comparison of the effects of each regulator on the synthesis of major extracellular metabolites, tolerance to several compounds, and synthesis of native and nonnative bioproducts under different growth conditions allowed the discrimination of the particular phenotypes that can be attributed to the individual mutants and singled out Cra and ArcA as the regulators with the most important effects on bacterial metabolism. These data were used to identify the most suitable backgrounds for the synthesis of the reduced bioproducts succinate and 1,3-propanediol (1,3-PDO). The Δcra mutant was further modified to enhance succinate synthesis by the addition of enzymes that increase NADH and CO2 availability, achieving an 80% increase compared to the parental strain. Production of 1,3-PDO in the ΔarcA mutant was optimized by overexpression of PhaP, which increased more than twice the amount of the diol compared to the wild type in a semidefined medium using glycerol, resulting in 24 g · liter-1 of 1,3-PDO after 48 h, with a volumetric productivity of 0.5 g · liter-1 h-1IMPORTANCE Although the effects of many global regulators, especially ArcA and Cra, have been studied in Escherichia coli, the metabolic changes caused by the absence of global regulators have been observed to differ between strains. This scenario complicates the identification of the individual effects of the regulators, which is essential for the design of metabolic engineering strategies. The genome of Escherichia coli BW25113 has been completely sequenced and does not contain additional mutations that could mask or interfere with the effects of the global regulator mutations. The uniform genetic background of the Keio collection mutants enabled the characterization of the physiological consequences of altered carbon and redox fluxes caused by each global regulator deletion, eliminating possible strain-dependent results. As a proof of concept, Δcra and ΔarcA mutants were subjected to further manipulations to obtain large amounts of succinate and 1,3-PDO, demonstrating that the metabolic backgrounds of the mutants were suitable for the synthesis of bioproducts.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Deletion , Gene Expression Regulation, Bacterial , Repressor Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/genetics , Glycerol/metabolism , Metabolic Engineering , Propylene Glycols/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Repressor Proteins/genetics , Succinic Acid/metabolism
5.
Appl Environ Microbiol ; 83(14)2017 07 15.
Article in English | MEDLINE | ID: mdl-28476770

ABSTRACT

The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. The phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against several kinds of stress. PhaP enhances growth and poly(3-hydroxybutyrate) synthesis in polymer-producing recombinant strains and reduces the formation of inclusion bodies during overproduction of heterologous proteins. In this work, the heterologous expression of this phasin in E. coli was used as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which both GroELS and PhaP were observed to exert a beneficial effect that varied depending on the chemical tested. Lastly, the potential of PhaP and GroEL to enhance the accumulation of ethanol or 1,3-propanediol was analyzed in recombinant E. coli Strains that overexpressed either groEL or phaP had increased growth, reflected in a higher final biomass and product titer than the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve the production of biofuels and other chemicals.IMPORTANCE This work has both basic and applied aspects. Our results demonstrate that a phasin with chaperone-like properties can increase bacterial tolerance to several biochemicals, providing further evidence of the diverse properties of these proteins. Additionally, both the PhaP phasin and the well-known chaperone GroEL were used to increase the biosynthesis of the biotechnologically relevant compounds ethanol and 1,3-propanediol in recombinant E. coli These findings open the road for the use of these proteins for the manipulation of bacterial strains to optimize the synthesis of diverse bioproducts from renewable carbon sources.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ethanol/metabolism , Plant Lectins/metabolism , Propylene Glycols/metabolism , Azotobacter/genetics , Bacterial Proteins/genetics , Biofuels , Plant Lectins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...