Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Nat Med ; 29(7): 1821-1831, 2023 07.
Article En | MEDLINE | ID: mdl-37414898

Chronic pain is a complex condition influenced by a combination of biological, psychological and social factors. Using data from the UK Biobank (n = 493,211), we showed that pain spreads from proximal to distal sites and developed a biopsychosocial model that predicted the number of coexisting pain sites. This data-driven model was used to identify a risk score that classified various chronic pain conditions (area under the curve (AUC) 0.70-0.88) and pain-related medical conditions (AUC 0.67-0.86). In longitudinal analyses, the risk score predicted the development of widespread chronic pain, the spreading of chronic pain across body sites and high-impact pain about 9 years later (AUC 0.68-0.78). Key risk factors included sleeplessness, feeling 'fed-up', tiredness, stressful life events and a body mass index >30. A simplified version of this score, named the risk of pain spreading, obtained similar predictive performance based on six simple questions with binarized answers. The risk of pain spreading was then validated in the Northern Finland Birth Cohort (n = 5,525) and the PREVENT-AD cohort (n = 178), obtaining comparable predictive performance. Our findings show that chronic pain conditions can be predicted from a common set of biopsychosocial factors, which can aid in tailoring research protocols, optimizing patient randomization in clinical trials and improving pain management.


Chronic Pain , Humans , Chronic Pain/epidemiology , Prognosis , Chronic Disease , Risk Factors , Pain Management/methods
2.
Eur Radiol ; 32(1): 405-414, 2022 Jan.
Article En | MEDLINE | ID: mdl-34170367

OBJECTIVES: To assess the value of contrast-enhanced (CE) diagnostic CT scans characterized through radiomics as predictors of recurrence for patients with stage II and III colorectal cancer in a two-center context. MATERIALS AND METHODS: This study included 193 patients diagnosed with stage II and III colorectal adenocarcinoma from 1 July 2008 to 15 March 2017 in two different French University Hospitals. To compensate for the variability in two-center data, a statistical harmonization method Bootstrapped ComBat (B-ComBat) was used. Models predicting disease-free survival (DFS) were built using 3 different machine learning (ML): (1) multivariate regression (MR) with 10-fold cross-validation after feature selection based on least absolute shrinkage and selection operator (LASSO), (2) random forest (RF), and (3) support vector machine (SVM), both with embedded feature selection. RESULTS: The performance for both balanced and 95% sensitivity models was systematically higher after our proposed B-ComBat harmonization compared to the use of the original untransformed data. The most clinically relevant performance was achieved by the multivariate regression model combining a clinical variable (postoperative chemotherapy) with two radiomics shape descriptors (compactness and least axis length) with a BAcc of 0.78 and an MCC of 0.6 associated with a required sensitivity of 95%. The resulting stratification in terms of DFS was significant (p = 0.00021), especially compared to the use of unharmonized original data (p = 0.17). CONCLUSIONS: Radiomics models derived from contrast-enhanced CT could be trained and validated in a two-center cohort with a good predictive performance of recurrence in stage II et III colorectal cancer patients. KEY POINTS: • Adjuvant therapy decision in colorectal cancer can be a challenge in medical oncology. • Radiomics models, derived from diagnostic CT, trained and validated in a two-center cohort, could predict recurrence in stage II and III colorectal cancer patients. • Identifying patients with a low risk of recurrence, these models could facilitate treatment optimization and avoid unnecessary treatment.


Colorectal Neoplasms , Tomography, X-Ray Computed , Colorectal Neoplasms/diagnostic imaging , Disease-Free Survival , Humans , Machine Learning , Retrospective Studies , Support Vector Machine
3.
PLoS One ; 16(7): e0253653, 2021.
Article En | MEDLINE | ID: mdl-34197503

PURPOSE: To facilitate the demonstration of the prognostic value of radiomics, multicenter radiomics studies are needed. Pooling radiomic features of such data in a statistical analysis is however challenging, as they are sensitive to the variability in scanner models, acquisition protocols and reconstruction settings, which is often unavoidable in a multicentre retrospective analysis. A statistical harmonization strategy called ComBat was utilized in radiomics studies to deal with the "center-effect". The goal of the present work was to integrate a transfer learning (TL) technique within ComBat-and recently developed alternate versions of ComBat with improved flexibility (M-ComBat) and robustness (B-ComBat)-to allow the use of a previously determined harmonization transform to the radiomic feature values of new patients from an already known center. MATERIAL AND METHODS: The proposed TL approach were incorporated in the four versions of ComBat (standard, B, M, and B-M ComBat). The proposed approach was evaluated using a dataset of 189 locally advanced cervical cancer patients from 3 centers, with magnetic resonance imaging (MRI) and positron emission tomography (PET) images, with the clinical endpoint of predicting local failure. The impact performance of the TL approach was evaluated by comparing the harmonization achieved using only parts of the data to the reference (harmonization achieved using all the available data). It was performed through three different machine learning pipelines. RESULTS: The proposed TL technique was successful in harmonizing features of new patients from a known center in all versions of ComBat, leading to predictive models reaching similar performance as the ones developed using the features harmonized with all the data available. CONCLUSION: The proposed TL approach enables applying a previously determined ComBat transform to new, previously unseen data.


Cervix Uteri/diagnostic imaging , Image Interpretation, Computer-Assisted/standards , Machine Learning/standards , Uterine Cervical Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Cervix Uteri/pathology , Chemoradiotherapy/methods , Datasets as Topic , Decision Support Systems, Clinical/standards , Decision Support Systems, Clinical/statistics & numerical data , Female , Follow-Up Studies , Humans , Image Interpretation, Computer-Assisted/methods , Image Interpretation, Computer-Assisted/statistics & numerical data , Machine Learning/statistics & numerical data , Magnetic Resonance Imaging/standards , Magnetic Resonance Imaging/statistics & numerical data , Middle Aged , Positron-Emission Tomography/standards , Positron-Emission Tomography/statistics & numerical data , Retrospective Studies , Tomography, X-Ray Computed/standards , Tomography, X-Ray Computed/statistics & numerical data , Treatment Outcome , Uterine Cervical Neoplasms/therapy , Young Adult
4.
Med Phys ; 48(7): 4099-4109, 2021 Jul.
Article En | MEDLINE | ID: mdl-34008178

PURPOSE: To develop a radiomic model predicting nonresponse to induction chemotherapy in laryngeal cancers, from multicenter pretherapeutic contrast-enhanced computed tomography (CE-CT) and evaluate the benefit of feature harmonization in such a context. METHODS: Patients (n = 104) eligible for laryngeal preservation chemotherapy were included in five centers. Primary tumor was manually delineated on the CE-CT images. The following radiomic features were extracted with an in-house software (MIRAS v1.1, LaTIM UMR 1101): intensity, shape, and textural features derived from Gray-Level Co-occurrence Matrix (GLCM), Neighborhood Gray Tone Difference Matrix (NGTDM), Gray-Level Run Length Matrix (GLRLM), and Gray-Level Size Zone Matrix (GLSZM). Harmonization was performed using ComBat after unsupervised hierarchical clustering, used to determine labels automatically, given the high heterogeneity of imaging characteristics across and within centers. Patients with similar feature distributions were grouped with unsupervised clustering into an optimal number of clusters (2) determined with "silhouette scoring." Statistical harmonization was then carried out with ComBat on these 2 identified clusters. The cohort was split into training/validation (n = 66) and testing (n = 32) sets. Area under the receiver operating characteristics curves (AUC) were used to evaluate the ability of radiomic features (before and after harmonization) to predict nonresponse to chemotherapy, and specificity (Sp) and sensitivity (Se) were used to quantify their performance in the testing set. RESULTS: Without harmonization, none of the features identified as predictive in the training set remained significant in the testing set. After ComBat, one textural feature identified in the training set keeps a predictive trend in the testing set-Zone Percentage, derived from the GLSZM, was predictive of nonresponse in the training set (AUC = 0.62, Se = 70%, Sp = 64%, P = 0.04) and obtained a satisfactory performance in the testing set (Se = 80%, Sp = 67%, P = 0.03), although significance was limited by the size of the testing set. These results are consistent with previously published findings in head and neck cancers. CONCLUSIONS: Radiomic features from CE-CT could help in the selection of patients for induction chemotherapy in laryngeal cancers, with relatively good sensitivity and specificity in predicting lack of response. Statistical harmonization with ComBat and unsupervised clustering seems to improve the predictive value of features extracted in such a heterogeneous multicenter setting.


Laryngeal Neoplasms , Cohort Studies , Humans , Induction Chemotherapy , Laryngeal Neoplasms/diagnostic imaging , Laryngeal Neoplasms/drug therapy , ROC Curve , Tomography, X-Ray Computed
5.
J Nucl Med ; 61(6): 814-820, 2020 06.
Article En | MEDLINE | ID: mdl-31732678

The aim of this retrospective multicentric study was to develop and evaluate a prognostic 18F-FDG PET/CT radiomic signature in early-stage non-small cell lung cancer patients treated with stereotactic body radiotherapy (SBRT). Methods: Patients from 3 different centers (n = 27, 29, and 8) were pooled to constitute the training set, whereas the patients from a fourth center (n = 23) were used as the testing set. The primary endpoint was local control. The primary tumor was semiautomatically delineated in the PET images using the fuzzy locally adaptive Bayesian algorithm, and manually in the low-dose CT images. In total, 184 Image Biomarkers Standardization Initiative-compliant radiomic features were extracted. Seven clinical and treatment parameters were included. We used ComBat to harmonize radiomic features extracted from the 4 institutions relying on different PET/CT scanners. In the training set, variables found significant in the univariate analysis were fed into a multivariate regression model, and models were built by combining independent prognostic factors. Results: Median follow-up was 21.1 mo (range, 1.7-63.4 mo) and 25.5 mo (range, 7.7-57.8 mo) in training and testing sets, respectively. In univariate analysis, none of the clinical variables, 2 PET features, and 2 CT features were significantly predictive of local control. The best predictive models in the training set were obtained by combining one feature from PET (Information Correlation 2) and one feature from CT (flatness), reaching a sensitivity of 100% and a specificity of 96%. Another model combining 2 PET features (Information Correlation 2 and strength) reached sensitivity of 100% and specificity of 88%, both with an undefined hazard ratio (P < 0.001). The latter model obtained an accuracy of 0.91 (sensitivity, 100%; specificity, 81%), with a hazard ratio undefined (P = 0.023) in the testing set; however, other models relying on CT radiomic features only or the combination of PET and CT features failed to validate in the testing set. Conclusion: We showed that 2 radiomic features derived from 18F-FDG PET were independently associated with local control in patients with non-small cell lung cancer undergoing SBRT and could be combined in an accurate predictive model. This model could provide local relapse-related information and could be helpful in clinical decision making.


Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Fluorodeoxyglucose F18 , Lung Neoplasms/diagnostic imaging , Neoplasm Recurrence, Local/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Radiosurgery/methods , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Female , Humans , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Male , Middle Aged , Neoplasm Staging , Retrospective Studies
...