Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
F1000Res ; 12: 926, 2023.
Article in English | MEDLINE | ID: mdl-39262445

ABSTRACT

Background: Access to sample-level metadata is important when selecting public metagenomic sequencing datasets for reuse in new biological analyses. The Standards, Precautions, and Advances in Ancient Metagenomics community (SPAAM, https://spaam-community.org) has previously published AncientMetagenomeDir, a collection of curated and standardised sample metadata tables for metagenomic and microbial genome datasets generated from ancient samples. However, while sample-level information is useful for identifying relevant samples for inclusion in new projects, Next Generation Sequencing (NGS) library construction and sequencing metadata are also essential for appropriately reprocessing ancient metagenomic data. Currently, recovering information for downloading and preparing such data is difficult when laboratory and bioinformatic metadata is heterogeneously recorded in prose-based publications. Methods: Through a series of community-based hackathon events, AncientMetagenomeDir was updated to provide standardised library-level metadata of existing and new ancient metagenomic samples. In tandem, the companion tool 'AMDirT' was developed to facilitate rapid data filtering and downloading of ancient metagenomic data, as well as improving automated metadata curation and validation for AncientMetagenomeDir. Results: AncientMetagenomeDir was extended to include standardised metadata of over 6000 ancient metagenomic libraries. The companion tool 'AMDirT' provides both graphical- and command-line interface based access to such metadata for users from a wide range of computational backgrounds. We also report on errors with metadata reporting that appear to commonly occur during data upload and provide suggestions on how to improve the quality of data sharing by the community. Conclusions: Together, both standardised metadata reporting and tooling will help towards easier incorporation and reuse of public ancient metagenomic datasets into future analyses.


Subject(s)
Metadata , Metagenomics , Metagenomics/methods , Humans , High-Throughput Nucleotide Sequencing/methods , Software , Metagenome , Computational Biology/methods , DNA, Ancient/analysis
2.
Proc Biol Sci ; 287(1940): 20202343, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33259759

ABSTRACT

Genetic analyses are an important contribution to wildlife reintroductions, particularly in the modern context of extirpations and ecological destruction. To address the complex historical ecology of the sea otter (Enhydra lutris) and its failed 1970s reintroduction to coastal Oregon, we compared mitochondrial genomes of pre-extirpation Oregon sea otters to extant and historical populations across the range. We sequenced, to our knowledge, the first complete ancient mitogenomes from archaeological Oregon sea otter dentine and historical sea otter dental calculus. Archaeological Oregon sea otters (n = 20) represent 10 haplotypes, which cluster with haplotypes from Alaska, Washington and British Columbia, and exhibit a clear division from California haplotypes. Our results suggest that extant northern populations are appropriate for future reintroduction efforts. This project demonstrates the feasibility of mitogenome capture and sequencing from non-human dental calculus and the diverse applications of ancient DNA analyses to pressing ecological and conservation topics and the management of at-risk/extirpated species.


Subject(s)
Archaeology , Genome, Mitochondrial , Otters , Alaska , Animals , British Columbia , Washington
3.
Sci Rep ; 10(1): 15172, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938967

ABSTRACT

An accurate understanding of biodiversity of the past is critical for contextualizing biodiversity patterns and trends in the present. Emerging techniques are refining our ability to decipher otherwise cryptic human-mediated species translocations across the Quaternary, yet these techniques are often used in isolation, rather than part of an interdisciplinary hypothesis-testing toolkit, limiting their scope and application. Here we illustrate the use of such an integrative approach and report the occurrence of North America's largest terrestrial mammalian carnivore, the short-faced bear, Arctodus simus, from Daisy Cave (CA-SMI-261), an important early human occupation site on the California Channel Islands. We identified the specimen by corroborating morphological, protein, and mitogenomic lines of evidence, and evaluated the potential natural and anthropogenic mechanisms of its transport and deposition. While representing just a single specimen, our combination of techniques opened a window into the behavior of an enigmatic species, suggesting that A. simus was a wide-ranging scavenger utilizing terrestrial and marine carcasses. This discovery highlights the utility of bridging archaeological and paleontological datasets to disentangle complex biogeographic scenarios and reveal unexpected biodiversity for island systems worldwide.


Subject(s)
Animal Migration , Ecosystem , Phylogeography/methods , Ursidae , Animals , Biodiversity , California , Fossils , Humans , Islands
SELECTION OF CITATIONS
SEARCH DETAIL