Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 10(9): 2287-2294, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30999753

ABSTRACT

The solvation structure of protons in aqueous media is highly relevant to electric properties and to proton transport in liquids and membranes. At ambient temperature, polar liquids display structural fluctuations on femto- to picosecond time scales with a direct impact on proton solvation. We use two-dimensional infrared (2D-IR) spectroscopy to follow proton dynamics in acetonitrile/water mixtures with the Zundel cation H5O2+ prepared in neat acetonitrile as a benchmark. The 2D-IR spectra of the proton transfer mode of H5O2+ demonstrate stochastic large-amplitude motions in the double-minimum proton potential, driven by fluctuating electric fields. In all cases, the excess proton is embedded in a water dimer, forming an H5O2+ complex as the major solvation species. This observation is rationalized by quantum mechanics/molecular mechanics molecular dynamics simulations including up to four water molecules embedded in acetonitrile. The Zundel motif interacts with its closest water neighbor in an H7O3+ unit without persistent proton localization.

2.
J Phys Chem Lett ; 10(2): 238-243, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30599134

ABSTRACT

Electric interactions between ions and ionic molecular groups in aqueous solution play a fundamental role in chemistry and biology. While Mg2+ ions are known to strongly affect the structure and folding dynamics of biomolecules, the relevance of different solvation geometries and the underlying interactions are mainly unresolved. We study dynamics and couplings between the hydrated Mg2+ and the dimethylphosphate anion, an established model system for the DNA and RNA backbone. The asymmetric (PO2-) stretching vibration serves as a sensitive noninvasive probe of phosphate-ion interactions. Femtosecond two-dimensional infrared (2D-IR) spectroscopy directly maps Mg2+ ions in contact with the phosphate groups via a distinct blue-shifted signature in the 2D spectrum. Data for different Mg2+ concentrations are analyzed by microscopic density functional theory modeling of cluster geometries and associated spectroscopic features, providing spatial assignments of the observed 2D-IR signatures. Phosphate-ion interactions arising from electrostatic Coulomb forces and exchange repulsion are the predominant origin of the observed frequency shifts.

3.
Science ; 357(6350): 491-495, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28705988

ABSTRACT

Solvation and transport of excess protons in aqueous systems play a fundamental role in acid-base chemistry and biochemical processes. We mapped ultrafast proton excursions along the proton transfer coordinate by means of two-dimensional infrared spectroscopy, both in bulk water and in a Zundel cation (H5O2)+ motif selectively prepared in acetonitrile. Electric fields from the environment and stochastic hydrogen bond motions induce fluctuations of the proton double-minimum potential. Within the lifetime of a particular hydration geometry, the proton explores a multitude of positions on a sub-100-femtosecond time scale. The proton transfer vibration is strongly damped by its 20- to 40-femtosecond population decay. Our results suggest a central role of Zundel-like geometries in aqueous proton solvation and transport.

4.
Dalton Trans ; 46(7): 2289-2302, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28133662

ABSTRACT

A heterotrinuclear [Pt2Fe] spin crossover (SCO) complex was developed and synthesized employing a ditopic bridging bpp-alkynyl ligand L and alkynyl coordinated PtII terpy units: [FeII(L-PtII)2]2(BF4)2 (1). We identified two different types of crystals of 1 which differ in their molecular packing and the number of co-crystallized solvent molecules: 1H (1·3.5CH2Cl2 in P1[combining macron]) and 1L (1·10CH2Cl2 in C2/c); while 1L shows a reversible SCO with a transition temperature of 268 K, the analogous compound 1H does not show any SCO and remains blocked in the HS state. The temperature-dependent magnetic properties of 1H and 1L were complementarily studied by Mössbauer spectroscopy. It has been shown that 1L performs thermal spin crossover and that 1L can be excited to a LIESST state. The vibrational properties of 1 were investigated by experimental nuclear resonance vibrational spectroscopy. The experimentally determined partial density of vibrational states (pDOS) was compared to a DFT-based simulation of the pDOS. The vibrational modes of the different components were assigned and visualized. In addition, the photophysical properties of 1 and L-Pt were investigated in the solid state and in solution. The ultrafast transient absorption spectroscopy of 1 in solution was carried out to study the PL quenching channel via energy transfer from photoexcited PtII terpy units to the FeII-moiety.

5.
Angew Chem Int Ed Engl ; 55(36): 10600-5, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27374368

ABSTRACT

The nature of the excess proton in liquid water has remained elusive after decades of extensive research. In view of ultrafast structural fluctuations of bulk water scrambling the structural motifs of excess protons in water, we selectively probe prototypical protonated water solvates in acetonitrile on the femtosecond time scale. Focusing on the Zundel cation H5 O2 (+) prepared in room-temperature acetonitrile, we unravel the distinct character of its vibrational absorption continuum and separate it from OH stretching and bending excitations in transient pump-probe spectra. The infrared absorption continuum originates from a strong ultrafast frequency modulation of the H(+) transfer vibration and its combination and overtones. Vibrational lifetimes of H5 O2 (+) are found to be in the sub-100 fs range, much shorter than those of unprotonated water. Theoretical results support a picture of proton hydration where fluctuating electrical interactions with the solvent and stochastic thermal excitations of low-frequency modes continuously modify the proton binding site while affecting its motions.

SELECTION OF CITATIONS
SEARCH DETAIL
...