Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
2.
Nature ; 630(8015): 247-254, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750358

ABSTRACT

The noradrenaline transporter has a pivotal role in regulating neurotransmitter balance and is crucial for normal physiology and neurobiology1. Dysfunction of noradrenaline transporter has been implicated in numerous neuropsychiatric diseases, including depression and attention deficit hyperactivity disorder2. Here we report cryo-electron microscopy structures of noradrenaline transporter in apo and substrate-bound forms, and as complexes with six antidepressants. The structures reveal a noradrenaline transporter dimer interface that is mediated predominantly by cholesterol and lipid molecules. The substrate noradrenaline binds deep in the central binding pocket, and its amine group interacts with a conserved aspartate residue. Our structures also provide insight into antidepressant recognition and monoamine transporter selectivity. Together, these findings advance our understanding of noradrenaline transporter regulation and inhibition, and provide templates for designing improved antidepressants to treat neuropsychiatric disorders.


Subject(s)
Antidepressive Agents , Cryoelectron Microscopy , Norepinephrine Plasma Membrane Transport Proteins , Norepinephrine , Protein Multimerization , Humans , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Binding Sites , Cholesterol/metabolism , Cholesterol/chemistry , Models, Molecular , Norepinephrine/metabolism , Norepinephrine/chemistry , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Norepinephrine Plasma Membrane Transport Proteins/chemistry , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/ultrastructure , Protein Binding , Substrate Specificity
3.
Eur J Pharmacol ; 968: 176419, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38360293

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) is a prime drug target for type 2 diabetes and obesity. The ligand initiated GLP-1R interaction with G protein has been well studied, but not with ß-arrestin 1/2. Therefore, bioluminescence resonance energy transfer (BRET), mutagenesis and an operational model were used to evaluate the roles of 85 extracellular surface residues on GLP-1R in ß-arrestin 1/2 recruitment triggered by three representative GLP-1R agonists (GLP-1, exendin-4 and oxyntomodulin). Residues selectively regulated ß-arrestin 1/2 recruitment for diverse ligands, and ß-arrestin isoforms were identified. Mutation of residues K130-S136, L142 and Y145 on the transmembrane helix 1 (TM1)-extracellular domain (ECD) linker decreased ß-arrestin 1 recruitment but increased ß-arrestin 2 recruitment. Other extracellular loop (ECL) mutations, including P137A, Q211A, D222A and M303A selectively affected ß-arrestin 1 recruitment while D215A, L217A, Q221A, S223A, Y289A, S301A, F381A and I382A involved more in ß-arrestin 2 recruitment for the ligands. Oxyntomodulin engaged more broadly with GLP-1R extracellular surface to drive ß-arrestin 1/2 recruitment than GLP-1 and exendin-4; I147, W214 and L218 involved in ß-arrestin 1 recruitment, while L141, D215, L218, D293 and F381 in ß-arrestin 2 recruitment for oxyntomodulin particularly. Additionally, the non-conserved residues on ß-arrestin 1/2 C-domains contributed to interaction with GLP-1R. Further proteomic profiling of GLP-1R stably expressed cell line upon ligand stimulation with or without ß-arrestin 1/2 overexpression demonstrated both commonly and biasedly regulated proteins and pathways associated with cognate ligands and ß-arrestins. Our study offers valuable information about ligand induced ß-arrestin recruitment mediated by GLP-1R and consequent intracellular signaling events.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , beta-Arrestin 1/metabolism , Exenatide/pharmacology , beta-Arrestin 2/genetics , beta-Arrestin 2/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Ligands , Oxyntomodulin/pharmacology , Proteomics , Glucagon-Like Peptide 1/metabolism , beta-Arrestins/metabolism
4.
Elife ; 122023 11 13.
Article in English | MEDLINE | ID: mdl-37955640

ABSTRACT

As a major class of biomolecules, carbohydrates play indispensable roles in various biological processes. However, it remains largely unknown how carbohydrates directly modulate important drug targets, such as G-protein coupled receptors (GPCRs). Here, we employed P2Y purinoceptor 14 (P2Y14), a drug target for inflammation and immune responses, to uncover the sugar nucleotide activation of GPCRs. Integrating molecular dynamics simulation with functional study, we identified the uridine diphosphate (UDP)-sugar-binding site on P2Y14, and revealed that a UDP-glucose might activate the receptor by bridging the transmembrane (TM) helices 2 and 7. Between TM2 and TM7 of P2Y14, a conserved salt bridging chain (K2.60-D2.64-K7.35-E7.36 [KDKE]) was identified to distinguish different UDP-sugars, including UDP-glucose, UDP-galactose, UDP-glucuronic acid, and UDP-N-acetylglucosamine. We identified the KDKE chain as a conserved functional motif of sugar binding for both P2Y14 and P2Y purinoceptor 12 (P2Y12), and then designed three sugar nucleotides as agonists of P2Y12. These results not only expand our understanding for activation of purinergic receptors but also provide insights for the carbohydrate drug development for GPCRs.


Sugars and other types of carbohydrates are biomolecules which play a range of key roles in the body. In particular, they are important messengers that help to coordinate immune responses. For example, a carbohydrate known as UDP-Glucose (a kind of UDP-sugar) can activate P2Y14, a receptor studded through the surface of many cells; this event then triggers a cascade of molecular events associated with asthma, kidney injury and lung inflammation. Yet it remains unclear how exactly UDP-Glucose recognizes P2Y14 ­ and, more broadly, how carbohydrates interact with purinergic receptors, the class of proteins that P2Y14 belongs to. To examine this question, Zhao et al. combined functional experiments in the laboratory with molecular dynamics simulations, a computational approach. This work revealed that UDP-Glucose may activate P2Y14 by bridging its segments anchored within the cell membrane. A component of P2Y14, known as the KDKE chain, was found to have an important role in distinguishing between highly similar types of UDP-sugars. This allowed Zhao et al. to design three sugar molecules which could activate another purinergic receptor that also contained a KDKE chain. Purinergic receptors are promising therapeutic targets. A finer understanding of how they recognise the molecules that activate them is therefore important to be able to identify and design new drug compounds.


Subject(s)
Nucleotides , Receptors, Purinergic , Uridine Diphosphate Glucose , Sugars , Receptors, Purinergic P2Y
5.
Proc Natl Acad Sci U S A ; 120(41): e2306145120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37792509

ABSTRACT

Glucose-dependent insulinotropic polypeptide receptor (GIPR) is a potential drug target for metabolic disorders. It works with glucagon-like peptide-1 receptor and glucagon receptor in humans to maintain glucose homeostasis. Unlike the other two receptors, GIPR has at least 13 reported splice variants (SVs), more than half of which have sequence variations at either C or N terminus. To explore their roles in endogenous peptide-mediated GIPR signaling, we determined the cryoelectron microscopy (cryo-EM) structures of the two N terminus-altered SVs (referred as GIPR-202 and GIPR-209 in the Ensembl database, SV1 and SV2 here, respectively) and investigated the outcome of coexpressing each of them in question with GIPR in HEK293T cells with respect to ligand binding, receptor expression, cAMP (adenosine 3,5-cyclic monophosphate) accumulation, ß-arrestin recruitment, and cell surface localization. It was found that while both N terminus-altered SVs of GIPR neither bound to the hormone nor elicited signal transduction per se, they suppressed ligand binding and cAMP accumulation of GIPR. Meanwhile, SV1 reduced GIPR-mediated ß-arrestin 2 responses. The cryo-EM structures of SV1 and SV2 showed that they reorganized the extracellular halves of transmembrane helices 1, 6, and 7 and extracellular loops 2 and 3 to adopt a ligand-binding pocket-occupied conformation, thereby losing binding ability to the peptide. The results suggest a form of signal bias that is constitutive and ligand-independent, thus expanding our knowledge of biased signaling beyond pharmacological manipulation (i.e., ligand specific) as well as constitutive and ligand-independent (e.g., SV1 of the growth hormone-releasing hormone receptor).


Subject(s)
Gastric Inhibitory Polypeptide , Receptors, Gastrointestinal Hormone , Humans , Gastric Inhibitory Polypeptide/genetics , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Ligands , Cryoelectron Microscopy , HEK293 Cells , Signal Transduction/physiology , Receptors, Gastrointestinal Hormone/genetics , Receptors, Gastrointestinal Hormone/chemistry , Receptors, Gastrointestinal Hormone/metabolism , Peptides , Glucagon-Like Peptide-1 Receptor/metabolism
6.
Proc Natl Acad Sci U S A ; 120(33): e2303696120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549266

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR), two members of class B1 G protein-coupled receptors, play important roles in glucose homeostasis and energy metabolism. They share a high degree of sequence homology but have different functionalities. Unimolecular dual agonists of both receptors developed recently displayed better clinical efficacies than that of monotherapy. To study the underlying molecular mechanisms, we determined high-resolution cryo-electron microscopy structures of GLP-1R or GCGR in complex with heterotrimeric Gs protein and three GLP-1R/GCGR dual agonists including peptide 15, MEDI0382 (cotadutide) and SAR425899 with variable activating profiles at GLP-1R versus GCGR. Compared with related structures reported previously and supported by our published pharmacological data, key residues responsible for ligand recognition and dual agonism were identified. Analyses of peptide conformational features revealed a difference in side chain orientations within the first three residues, indicating that distinct engagements in the deep binding pocket are required to achieve receptor selectivity. The middle region recognizes extracellular loop 1 (ECL1), ECL2, and the top of transmembrane helix 1 (TM1) resulting in specific conformational changes of both ligand and receptor, especially the dual agonists reshaped ECL1 conformation of GLP-1R relative to that of GCGR, suggesting an important role of ECL1 interaction in executing dual agonism. Structural investigation of lipid modification showed a better interaction between lipid moiety of MEDI0382 and TM1-TM2 cleft, in line with its increased potency at GCGR than SAR425899. Together, the results provide insightful information for the design and development of improved therapeutics targeting these two receptors simultaneously.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Receptors, Glucagon , Cryoelectron Microscopy , Glucagon-Like Peptide-1 Receptor/agonists , Ligands , Lipids , Peptides/chemistry , Receptors, Glucagon/agonists
7.
Cell Discov ; 9(1): 81, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37524700

ABSTRACT

Members of the melanocortin receptor (MCR) family that recognize different melanocortin peptides mediate a broad spectrum of cellular processes including energy homeostasis, inflammation and skin pigmentation through five MCR subtypes (MC1R-MC5R). The structural basis of subtype selectivity of the endogenous agonist γ-MSH and non-selectivity of agonist α-MSH remains elusive, as the two agonists are highly similar with a conserved HFRW motif. Here, we report three cryo-electron microscopy structures of MC3R-Gs in complex with γ-MSH and MC5R-Gs in the presence of α-MSH or a potent synthetic agonist PG-901. The structures reveal that α-MSH and γ-MSH adopt a "U-shape" conformation, penetrate into the wide-open orthosteric pocket and form massive common contacts with MCRs via the HFRW motif. The C-terminus of γ-MSH occupies an MC3R-specific complementary binding groove likely conferring subtype selectivity, whereas that of α-MSH distances itself from the receptor with neglectable contacts. PG-901 achieves the same potency as α-MSH with a shorter length by rebalancing the recognition site and mimicking the intra-peptide salt bridge in α-MSH by cyclization. Solid density confirmed the calcium ion binding in MC3R and MC5R, and the distinct modulation effects of divalent ions were demonstrated. Our results provide insights into ligand recognition and subtype selectivity among MCRs, and expand the knowledge of signal transduction among MCR family members.

8.
Cell Res ; 33(1): 46-54, 2023 01.
Article in English | MEDLINE | ID: mdl-36588120

ABSTRACT

G protein-coupled receptors (GPCRs) are regulated by various downstream proteins, of which the melanocortin receptor accessory protein 1 (MRAP1) is closely involved in the regulation of melanocortin receptor 2 (MC2R). Assisted by MRAP1, MC2R responds to adrenocorticotropic hormone (ACTH) and stimulates glucocorticoid biogenesis and cortisol secretion. MC2R activation plays an essential role in the hypothalamic-pituitary-adrenal (HPA) axis that regulates stress response, while its dysfunction causes glucocorticoid insufficiency- or cortisol excess-associated disorders. Here, we present a cryo-electron microscopy (cryo-EM) structure of the ACTH-bound MC2R-Gs-MRAP1 complex. Our structure, together with mutagenesis analysis, reveals a unique sharp kink at the extracellular region of MRAP1 and the 'seat-belt' effect of MRAP1 on stabilizing ACTH binding and MC2R activation. Mechanisms of ACTH recognition by MC2R and receptor activation are also demonstrated. These findings deepen our understanding of GPCR regulation by accessory proteins and provide valuable insights into the ab initio design of therapeutic agents targeting MC2R.


Subject(s)
Melanocortins , Receptor, Melanocortin, Type 2 , Humans , Receptor, Melanocortin, Type 2/metabolism , Glucocorticoids , Hydrocortisone , Cryoelectron Microscopy , Adrenocorticotropic Hormone/metabolism
9.
Acta Pharmacol Sin ; 44(6): 1227-1237, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36482086

ABSTRACT

Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) are two endogenous hormones recognized by PTH receptor-1 (PTH1R), a member of class B G protein- coupled receptors (GPCRs). Both PTH and PTHrP analogs including teriparatide and abaloparatide are approved drugs for osteoporosis, but they exhibit distinct pharmacology. Here we report two cryo-EM structures of human PTH1R bound to PTH and PTHrP in the G protein-bound state at resolutions of 2.62 Å and 3.25 Å, respectively. Detailed analysis of these structures uncovers both common and unique features for the agonism of PTH and PTHrP. Molecular dynamics (MD) simulation together with site-directed mutagenesis studies reveal the molecular basis of endogenous hormones recognition specificity and selectivity to PTH1R. These results provide a rational template for the clinical use of PTH and PTHrP analogs as an anabolic therapy for osteoporosis and other disorders.


Subject(s)
Osteoporosis , Parathyroid Hormone-Related Protein , Humans , Parathyroid Hormone-Related Protein/metabolism , Parathyroid Hormone-Related Protein/pharmacology , Amino Acid Sequence , Parathyroid Hormone/chemistry , Parathyroid Hormone/metabolism , Receptors, G-Protein-Coupled , Osteoporosis/drug therapy
10.
Acta Pharmacol Sin ; 44(2): 421-433, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35953646

ABSTRACT

The paradigm of one drug against multiple targets, known as unimolecular polypharmacology, offers the potential to improve efficacy while overcoming some adverse events associated with the treatment. This approach is best exemplified by targeting two or three class B1 G protein-coupled receptors, namely, glucagon-like peptide-1 receptor (GLP-1R), glucagon receptor (GCGR) and glucose-dependent insulinotropic polypeptide receptor for treatment of type 2 diabetes and obesity. Some of the dual and triple agonists have already shown initial successes in clinical trials, although the molecular mechanisms underlying their multiplexed pharmacology remain elusive. In this study we employed structure-based site-directed mutagenesis together with pharmacological assays to compare agonist efficacy across two key signaling pathways, cAMP accumulation and ERK1/2 phosphorylation (pERK1/2). Three dual agonists (peptide 15, MEDI0382 and SAR425899) and one triple agonist (peptide 20) were evaluated at GLP-1R and GCGR, relative to the native peptidic ligands (GLP-1 and glucagon). Our results reveal the existence of residue networks crucial for unimolecular agonist-mediated receptor activation and their distinct signaling patterns, which might be useful to the rational design of biased drug leads.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Mutagenesis, Site-Directed , Peptides/chemistry , Receptors, Glucagon/genetics , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Signal Transduction , Transcription Factors
11.
Cell Res ; 32(8): 761-772, 2022 08.
Article in English | MEDLINE | ID: mdl-35739238

ABSTRACT

Somatostatin receptors (SSTRs) play versatile roles in inhibiting the secretion of multiple hormones such as growth hormone and thyroid-stimulating hormone, and thus are considered as targets for treating multiple tumors. Despite great progress made in therapeutic development against this diverse receptor family, drugs that target SSTRs still show limited efficacy with preferential binding affinity and conspicuous side-effects. Here, we report five structures of SSTR2 and SSTR4 in different states, including two crystal structures of SSTR2 in complex with a selective peptide antagonist and a non-peptide agonist, respectively, a cryo-electron microscopy (cryo-EM) structure of Gi1-bound SSTR2 in the presence of the endogenous ligand SST-14, as well as two cryo-EM structures of Gi1-bound SSTR4 in complex with SST-14 and a small-molecule agonist J-2156, respectively. By comparison of the SSTR structures in different states, molecular mechanisms of agonism and antagonism were illustrated. Together with computational and functional analyses, the key determinants responsible for ligand recognition and selectivity of different SSTR subtypes and multiform binding modes of peptide and non-peptide ligands were identified. Insights gained in this study will help uncover ligand selectivity of various SSTRs and accelerate the development of new molecules with better efficacy by targeting SSTRs.


Subject(s)
Neoplasms , Receptors, Somatostatin , Cryoelectron Microscopy , Humans , Ligands , Neoplasms/metabolism , Receptors, Somatostatin/agonists , Receptors, Somatostatin/metabolism , Somatostatin/metabolism , Somatostatin/pharmacology , Somatostatin/therapeutic use
12.
Proc Natl Acad Sci U S A ; 119(20): e2200155119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35561211

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) agonists are effective in treating type 2 diabetes and obesity with proven cardiovascular benefits. However, most of these agonists are peptides and require subcutaneous injection except for orally available semaglutide. Boc5 was identified as the first orthosteric nonpeptidic agonist of GLP-1R that mimics a broad spectrum of bioactivities of GLP-1 in vitro and in vivo. Here, we report the cryoelectron microscopy structures of Boc5 and its analog WB4-24 in complex with the human GLP-1R and Gs protein. Bound to the extracellular domain, extracellular loop 2, and transmembrane (TM) helices 1, 2, 3, and 7, one arm of both compounds was inserted deeply into the bottom of the orthosteric binding pocket that is usually accessible by peptidic agonists, thereby partially overlapping with the residues A8 to D15 in GLP-1. The other three arms, meanwhile, extended to the TM1-TM7, TM1-TM2, and TM2-TM3 clefts, showing an interaction feature substantially similar to the previously known small-molecule agonist LY3502970. Such a unique binding mode creates a distinct conformation that confers both peptidomimetic agonism and biased signaling induced by nonpeptidic modulators at GLP-1R. Further, the conformational difference between Boc5 and WB4-24, two closed related compounds, provides a structural framework for fine-tuning of pharmacological efficacy in the development of future small-molecule therapeutics targeting GLP-1R.


Subject(s)
Cyclobutanes , Glucagon-Like Peptide-1 Receptor , Peptidomimetics , Cryoelectron Microscopy , Cyclobutanes/chemistry , Cyclobutanes/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/chemistry , Humans , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Protein Domains
13.
Nat Commun ; 13(1): 2272, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477937

ABSTRACT

Class B1 of G protein-coupled receptors (GPCRs) comprises 15 members activated by physiologically important peptide hormones. Among them, vasoactive intestinal polypeptide receptor 2 (VIP2R) is expressed in the central and peripheral nervous systems and involved in a number of pathophysiological conditions, including pulmonary arterial hypertension, autoimmune and psychiatric disorders, in which it is thus a valuable drug target. Here, we report the cryo-electron microscopy structure of the human VIP2R bound to its endogenous ligand PACAP27 and the stimulatory G protein. Different from all reported peptide-bound class B1 GPCR structures, the N-terminal α-helix of VIP2R adopts a unique conformation that deeply inserts into a cleft between PACAP27 and the extracellular loop 1, thereby stabilizing the peptide-receptor interface. Its truncation or extension significantly decreased VIP2R-mediated cAMP accumulation. Our results provide additional information on peptide recognition and receptor activation among class B1 GPCRs and may facilitate the design of better therapeutics.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide , Vasoactive Intestinal Peptide , Cryoelectron Microscopy , Humans , Ligands , Receptors, G-Protein-Coupled/metabolism , Vasoactive Intestinal Peptide/metabolism
14.
Nat Commun ; 13(1): 1057, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217653

ABSTRACT

Glucose homeostasis, regulated by glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1) and glucagon (GCG) is critical to human health. Several multi-targeting agonists at GIPR, GLP-1R or GCGR, developed to maximize metabolic benefits with reduced side-effects, are in clinical trials to treat type 2 diabetes and obesity. To elucidate the molecular mechanisms by which tirzepatide, a GIPR/GLP-1R dual agonist, and peptide 20, a GIPR/GLP-1R/GCGR triagonist, manifest their multiplexed pharmacological actions over monoagonists such as semaglutide, we determine cryo-electron microscopy structures of tirzepatide-bound GIPR and GLP-1R as well as peptide 20-bound GIPR, GLP-1R and GCGR. The structures reveal both common and unique features for the dual and triple agonism by illustrating key interactions of clinical relevance at the near-atomic level. Retention of glucagon function is required to achieve such an advantage over GLP-1 monotherapy. Our findings provide valuable insights into the structural basis of functional versatility of tirzepatide and peptide 20.


Subject(s)
Diabetes Mellitus, Type 2 , Receptors, Glucagon , Cryoelectron Microscopy , Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide , Glucagon/metabolism , Glucagon-Like Peptide 1/therapeutic use , Glucagon-Like Peptide-1 Receptor/metabolism , Glucose/therapeutic use , Humans , Peptides/chemistry , Receptors, G-Protein-Coupled
15.
ACS Chem Biol ; 16(11): 2444-2452, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34570476

ABSTRACT

The glucagon-like peptide-1 receptor (GLP-1R) is a well-established drug target for the treatment of type II diabetes. The development of small-molecule positive allosteric modulators (PAMs) of GLP-1R is a promising therapeutic strategy. Here, we report the discovery and characterization of PAMs with distinct chemotypes, binding to a cryptic pocket formed by the cytoplasmic half of TM3, TM5, and TM6. Molecular dynamic simulations and mutagenesis studies indicate that the PAM enlarges the orthosteric pocket to facilitate GLP-1 binding. Further signaling assays characterized their probe-dependent signaling profiles. Our findings provide mechanistic insights into fine-tuning GLP-1R via this allosteric pocket and open up new avenues to design small-molecule drugs for class B G-protein-coupled receptors.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Allosteric Regulation , Binding Sites , Cell Membrane/metabolism , Cyclic AMP/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Molecular Dynamics Simulation , Mutagenesis , Protein Binding , beta-Arrestins/metabolism
16.
Nat Chem Biol ; 17(12): 1238-1244, 2021 12.
Article in English | MEDLINE | ID: mdl-34556862

ABSTRACT

Cholecystokinin A receptor (CCKAR) belongs to family A G-protein-coupled receptors and regulates nutrient homeostasis upon stimulation by cholecystokinin (CCK). It is an attractive drug target for gastrointestinal and metabolic diseases. One distinguishing feature of CCKAR is its ability to interact with a sulfated ligand and to couple with divergent G-protein subtypes, including Gs, Gi and Gq. However, the basis for G-protein coupling promiscuity and ligand recognition by CCKAR remains unknown. Here, we present three cryo-electron microscopy structures of sulfated CCK-8-activated CCKAR in complex with Gs, Gi and Gq heterotrimers, respectively. CCKAR presents a similar conformation in the three structures, whereas conformational differences in the 'wavy hook' of the Gα subunits and ICL3 of the receptor serve as determinants in G-protein coupling selectivity. Our findings provide a framework for understanding G-protein coupling promiscuity by CCKAR and uncover the mechanism of receptor recognition by sulfated CCK-8.


Subject(s)
Cholecystokinin/chemistry , Receptor, Cholecystokinin A/chemistry , Receptors, G-Protein-Coupled/chemistry , Sincalide/analogs & derivatives , Amino Acid Sequence , Benzodiazepinones/chemistry , Cryoelectron Microscopy , Humans , Ligands , Models, Molecular , Protein Binding , Protein Conformation , Protein Multimerization , Sincalide/chemistry , Triazoles/chemistry
17.
Nat Chem Biol ; 17(12): 1230-1237, 2021 12.
Article in English | MEDLINE | ID: mdl-34556863

ABSTRACT

Cholecystokinin receptors, CCKAR and CCKBR, are important neurointestinal peptide hormone receptors and play a vital role in food intake and appetite regulation. Here, we report three crystal structures of the human CCKAR in complex with different ligands, including one peptide agonist and two small-molecule antagonists, as well as two cryo-electron microscopy structures of CCKBR-gastrin in complex with Gi2 and Gq, respectively. These structures reveal the recognition pattern of different ligand types and the molecular basis of peptide selectivity in the cholecystokinin receptor family. By comparing receptor structures in different conformational states, a stepwise activation process of cholecystokinin receptors is proposed. Combined with pharmacological data, our results provide atomic details for differential ligand recognition and receptor activation mechanisms. These insights will facilitate the discovery of potential therapeutics targeting cholecystokinin receptors.


Subject(s)
Devazepide/chemistry , Receptors, Cholecystokinin/chemistry , Amino Acid Sequence , Cryoelectron Microscopy , Crystallization , Humans , Indoleacetic Acids/chemistry , Ligands , Models, Molecular , Protein Binding , Protein Conformation , Receptors, Cholecystokinin/genetics , Structure-Activity Relationship , Thiazoles/chemistry
18.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34353904

ABSTRACT

The parathyroid hormone receptor 2 (PTH2R) is a class B1 G protein-coupled receptor (GPCR) involved in the regulation of calcium transport, nociception mediation, and wound healing. Naturally occurring mutations in PTH2R were reported to cause hereditary diseases, including syndromic short stature. Here, we report the cryogenic electron microscopy structure of PTH2R bound to its endogenous ligand, tuberoinfundibular peptide (TIP39), and a heterotrimeric Gs protein at a global resolution of 2.8 Å. The structure reveals that TIP39 adopts a unique loop conformation at the N terminus and deeply inserts into the orthosteric ligand-binding pocket in the transmembrane domain. Molecular dynamics simulation and site-directed mutagenesis studies uncover the basis of ligand specificity relative to three PTH2R agonists, TIP39, PTH, and PTH-related peptide. We also compare the action of TIP39 with an antagonist lacking six residues from the peptide N terminus, TIP(7-39), which underscores the indispensable role of the N terminus of TIP39 in PTH2R activation. Additionally, we unveil that a disease-associated mutation G258D significantly diminished cAMP accumulation induced by TIP39. Together, these results not only provide structural insights into ligand specificity and receptor activation of class B1 GPCRs but also offer a foundation to systematically rationalize the available pharmacological data to develop therapies for various disorders associated with PTH2R.


Subject(s)
Receptor, Parathyroid Hormone, Type 2/chemistry , Receptor, Parathyroid Hormone, Type 2/metabolism , Binding Sites , Cryoelectron Microscopy , Cyclic AMP/metabolism , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , Humans , Ligands , Molecular Dynamics Simulation , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Mutation , Neuropeptides/chemistry , Neuropeptides/metabolism , Protein Conformation , Receptor, Parathyroid Hormone, Type 2/genetics
19.
Biochem Pharmacol ; 192: 114715, 2021 10.
Article in English | MEDLINE | ID: mdl-34339714

ABSTRACT

Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are part of the incretin system that regulates glucose homeostasis. A series of GIPR residues putatively important for ligand binding and receptor activation were mutated and pharmacologically evaluated using GIPR selective agonists in cAMP accumulation, ERK1/2 phosphorylation (pERK1/2) and ß-arrestin 2 recruitment assays. The impact of mutation on ligand efficacy was determined by operational modelling of experimental data for each mutant, with results mapped onto the full-length, active-state GIPR structure. Two interaction networks, comprising transmembrane helix (TM) 7, TM1 and TM2, and extracellular loop (ECL) 2, TM5 and ECL3 were revealed, respectively. Both networks were critical for Gαs-mediated cAMP accumulation and the recruitment of ß-arrestin 2, however, cAMP response was more sensitive to alanine substitution, with most mutated residues displaying reduced signaling. Unlike the other two assays, activation of ERK1/2 was largely independent of the network involving ECL2, TM5 and ECL3, indicating that pERK1/2 is at least partially distinct from Gαs or ß-arrestin pathways and this network is also crucial for potential biased agonism at GIPR. Collectively, our work advances understanding of the structure-function relationship of GIPR and provides a framework for the design and/or interpretation of GIP analogues with unique signaling profiles.


Subject(s)
Gastric Inhibitory Polypeptide/genetics , Gastric Inhibitory Polypeptide/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Gastrointestinal Hormone/metabolism , Amino Acid Sequence , Animals , Binding Sites/drug effects , Binding Sites/physiology , COS Cells , Chlorocebus aethiops , Dose-Response Relationship, Drug , Gastric Inhibitory Polypeptide/chemistry , Gastric Inhibitory Polypeptide/pharmacology , HEK293 Cells , Humans , Mutation/physiology , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protein Structure, Secondary , Receptors, Gastrointestinal Hormone/chemistry
20.
Cell Res ; 31(10): 1061-1071, 2021 10.
Article in English | MEDLINE | ID: mdl-34453129

ABSTRACT

Melanocortins are peptide hormones critical for the regulation of stress response, energy homeostasis, inflammation, and skin pigmentation. Their functions are mediated by five G protein-coupled receptors (MC1R-MC5R), predominately through the stimulatory G protein (Gs). MC1R, the founding member of melanocortin receptors, is mainly expressed in melanocytes and is involved in melanogenesis. Dysfunction of MC1R is associated with the development of melanoma and skin cancer. Here we present three cryo-electron microscopy structures of the MC1R-Gs complexes bound to endogenous hormone α-MSH, a marketed drug afamelanotide, and a synthetic agonist SHU9119. These structures reveal the orthosteric binding pocket for the conserved HFRW motif among melanocortins and the crucial role of calcium ion in ligand binding. They also demonstrate the basis of differential activities among different ligands. In addition, unexpected interactions between MC1R and the Gß subunit were discovered from these structures. Together, our results elucidate a conserved mechanism of calcium-mediated ligand recognition, a specific mode of G protein coupling, and a universal activation pathway of melanocortin receptors.


Subject(s)
Calcium , GTP-Binding Proteins/metabolism , Receptor, Melanocortin, Type 1 , Calcium/metabolism , Cryoelectron Microscopy , Humans , Melanocortins , Melanocytes , Receptor, Melanocortin, Type 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...