Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 503
Filter
1.
ACS Nano ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38993077

ABSTRACT

Vanadium redox flow battery (VRFB) has garnered significant attention due to its potential for facilitating the cost-effective utilization of renewable energy and large-scale power storage. However, the limited electrochemical activity of the electrode in vanadium redox reactions poses a challenge in achieving a high-performance VRFB. Consequently, there is a pressing need to assess advancements in electrodes to inspire innovative approaches for enhancing electrode structure and composition. This work categorizes three-dimensional (3D) electrodes derived from materials such as foam, biomass, and electrospun fibers. By employing a flexible electrode design and compositional functionalization, high-speed mass transfer channels and abundant active sites for vanadium redox reactions can be created. Furthermore, the incorporation of 3D electrocatalysts into the electrodes is discussed, including metal-based, carbon-based, and composite materials. The strong interaction and ordered arrangement of these nanocomposites have an influence on the uniformity and stability of the surface charge distribution, thereby enhancing the electrochemical performance of the composite electrodes. Finally, the challenges and perspectives of VRFB are explored through advancements in 3D electrodes, 3D electrocatalysts, and mechanisms. It is hoped that this review will inspire the development of methodology and concept of 3D electrodes in VRFB, so as to promote the future development of scientific energy storage and conversion technology.

2.
Small ; : e2400496, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949033

ABSTRACT

Vanadium redox flow battery (VRFB) is a type of energy storage device known for its large-scale capacity, long-term durability, and high-level safety. It serves as an effective solution to address the instability and intermittency of renewable energy sources. Carbon-based materials are widely used as VRFB electrodes due to cost-effectiveness and well-stability. However, pristine electrodes need proper modification to overcome original poor hydrophilicity and fewer reaction active sites. Adjusting the carbon structure is recognized as a viable method to boost the electrochemical activity of electrodes. This review delves into the advancements in research related to ordered and disordered carbon structure electrodes including the adjusting methods, structural characteristics, and catalytic properties. Ordered carbon structures are categorized into nanoscale and macroscale orderliness based on size, leading to improved conductivity and overall performance of the electrode. Disordered carbon structures encompass methods such as doping atoms, grafting functional groups, and creating engineered holes to enhance active sites and hydrophilicity. Based on the current research findings on carbon electrode structures, this work puts forth some promising prospects for future feasibility.

3.
Angew Chem Int Ed Engl ; : e202410251, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973470

ABSTRACT

Considering the substantial role of ammonia, developing highly efficient electrocatalysts for nitrate-to-ammonia conversion has attracted increasing interest. Herein, we proposed a feasible strategy of p-d orbital hybridization via doping p-block metals in an Ag host, which drastically promotes the performance of nitrate adsorption and disassociation. Typically, a Sn-doped Ag catalyst (SnAg) delivers a maximum Faradaic efficiency (FE) of 95.5 ± 1.85 % for NH3 at -0.4 V vs. RHE and reaches the highest NH3 yield rate to 482.3 ± 14.1 mg h-1 mgcat.-1. In a flow cell, the SnAg catalyst achieves a FE of 90.2 % at an ampere-level current density of 1.1 A cm-2 with an NH3 yield of 78.6 mg h-1 cm-2, during which NH3 can be further extracted to prepare struvite as high-quality fertilizer. A mechanistic study reveals that a strong p-d orbital hybridization effect in SnAg is beneficial for nitrite deoxygenation, a rate-determining step for NH3 synthesis, which as a general principle, can be further extended to Bi- and In-doped Ag catalysts. Moreover, when integrated into a Zn-nitrate battery, such a SnAg cathode contributes to a superior energy density of 639 Wh L-1, high power density of 18.1 mW cm-2, and continuous NH3 production.

4.
Int J Biol Macromol ; : 133640, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969047

ABSTRACT

The potential of using emulsion gels stabilized by binary plant protein nanoparticle mixtures for the encapsulation and delivery of lipophilic nutraceuticals was evaluated. The particle characteristics, physical stability, water diffusivity, microrheology, large amplitude oscillating shear (LAOS) properties, and in vitro digestion of emulsion gels prepared by different ratios of hydrolyzed rice glutelin fibrils (HRGFs) and pea protein nanoparticle (PNP) were characterized. The emulsion gel with P/H = 2:1 (0.84 µm) exhibited the best storage stability and freeze-thaw stability, as seen by the smaller oil droplet size (1.02 and 1.42 µm, respectively). Low-field pulsed NMR indicated that the majority of water in samples was highly mobile. All the samples were predominantly elastic-like materials. The P/H 2:1 emulsion gel had the lowest FI value (6.21 × 10-4 Hz), the highest MVI value (5.57 s/nm2), G'/ G″ values and enclosed area, showing that it had denser 3D network structures, higher stiffness values, and a high sensitivity to changes in strain. Additionally, P/H 2:1 emulsion gel had a relatively high lipid digestibility (96.1 %), curcumin bioaccessibility (58.9 %), and curcumin stability (94.2 %). This study showed that emulsion gels stabilized by binary protein nanoparticle mixtures (PNP/HRGF) have potential as edible delivery systems for lipophilic nutraceuticals.

5.
Front Plant Sci ; 15: 1418480, 2024.
Article in English | MEDLINE | ID: mdl-38988635

ABSTRACT

Quisqualis fructus (QF) is a traditional Chinese medicine (TCM) that it has a long history in the therapeutic field of killing parasites, eliminating accumulation, and stopping diarrhea. However, the therapeutic material basis of QF is remaining ambiguous nowadays. The geographical origin differences of QF are also usually ignored in the process of medication. In this study, the alcohol-aqueous soluble constituents in QF from different origins were systematically characterized and accurately measured by ultra-high performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and high-performance liquid chromatography (HPLC) respectively. Chemometric analysis was performed for origin differentiation and screening of potential quality marker (Q-marker). Finally, A total of 106 constituents were tentatively characterized in positive and negative ion modes, including 29 fatty acids, 26 organic acids, 11 amino acids and derivatives, 10 glycosides, 9 alkaloids and derivatives, and 21 other constituents. QF from different origins were effectively distinguished and 16 constituents were selected as the potential Q-markers subsequently. Four representative components (trigonelline, adenosine, ellagic acid, and 3,3'-di-O-methylellagic acid) in QF samples were simultaneously determined. HPLC fingerprint analysis indicated that the similarity between 16 batches of QF was in the range of 0.870-0.999. The above results provide some insights for the research on the pharmacodynamic constituents, quality control, and geographical discrimination of QF.

6.
Carbohydr Polym ; 341: 122320, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876713

ABSTRACT

In an oil exploitation process, hydrogel plugging agents can effectively reduce the water-oil intermixing, decrease water extraction volume, and enhance oil recovery rate. The practical applications of traditional polyacrylamide (PAM) hydrogel plugging agents in oilfield are limited by their non-biodegradability, poor mechanical performance, and inferior temperature-resistance. This work developed a mechanically stable and high-temperature-resistant composite hydrogel (STP) by incorporating biodegradable scleroglucan (Slg) and TEMPO-oxidized cellulose nanofibers (TOCN) in the PAM hydrogel. The addition of Slg conferred heat resistance to the PAM hydrogel, while TOCN reinforced the mechanical strength. Anti-aging analyses revealed that the STP endured for 108 h in a saline environment at 140 °C. In the water flooding characterization, the STP displayed a breakthrough pressure of 42.10 psi/ft. at a flow rate of 0.75 cm3/min. Under these extreme conditions, the plugging pressure reached 14.74 psi/ft., meeting the essential criteria for oilfield water plugging. This research demonstrates the potential of polysaccharides in the preparation of sustainable, tough, and heat-resistant water plugging materials.

7.
J Colloid Interface Sci ; 674: 336-344, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38936090

ABSTRACT

Sluggish kinetics and severe structural instability of manganese-based cathode materials for rechargeable aqueous zinc-ion batteries (ZIBs) lead to low-rate capacity and poor cyclability, which hinder their practical applications. Pillaring manganese dioxide (MnO2) by pre-intercalation is an effective strategy to solve the above problems. However, increasing the pre-intercalation content to realize stable cycling of high capacity at large current densities is still challenging. Here, high-rate aqueous Zn2+ storage is realized by a high-capacity K+-pillared multi-nanochannel MnO2 cathode with 1 K per 4 Mn (δ-K0.25MnO2). The high content of the K+ pillar, in conjunction with the three-dimensional confinement effect and size effect, promotes the stability and electron transport of multi-nanochannel layered MnO2 in the ion insertion/removal process during cycling, accelerating and accommodating more Zn2+ diffusion. Multi-perspective in/ex-situ characterizations conclude that the energy storage mechanism is the Zn2+/H+ ions co-intercalating and phase transformation process. More specifically, the δ-K0.25MnO2 nanospheres cathode delivers an ultrahigh reversible capacity of 297 mAh g-1 at 1 A g-1 for 500 cycles, showing over 96 % utilization of the theoretical capacity of δ-MnO2. Even at 3 A g-1, it also delivered a 63 % utilization and 64 % capacity retention after 1000 cycles. This study introduces a highly efficient cathode material based on manganese oxide and a comprehensive analysis of its structural dynamics. These findings have the potential to improve energy storage capabilities in ZIBs significantly.

8.
J Thorac Dis ; 16(5): 3228-3250, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38883620

ABSTRACT

Background: The preoperative differential diagnosis of nodular lung adenocarcinoma has long been a challenging issue for thoracic surgeons. This study aimed to explore differential diagnosis of nodular lung adenocarcinoma by comprehensively analyzing its clinical, computed tomography (CT) imaging, and postoperative pathological and genetic features. Methods: The clinical, CT imaging, and postoperative pathological features of different classifications of nodular lung adenocarcinoma were retrospectively analyzed through univariate and multivariate statistical methods. Results: There were 132 patients with nodular lung adenocarcinoma enrolled. Firstly, compared with ground-glass nodular lung adenocarcinoma, solid nodular lung adenocarcinoma was more common in women [odds ratio (OR), 3.662; 95% confidence interval (CI): 1.066-12.577] and older adults (OR, 1.061; 95% CI: 1.007-1.119), and CT signs were mostly lobulation (OR, 4.957; 95% CI: 1.714-14.337) and spiculation (OR, 8.214; 95% CI: 2.740-24.621); the mean CT (CTm) value of solid nodular lung adenocarcinoma was significantly higher than that of ground-glass nodular lung adenocarcinoma, and the optimal diagnostic threshold was -267.5 Hounsfield units (HU). Secondly, the maximum diameter of nodule size (NSmax) of invasive adenocarcinoma (IAC) was significantly greater than that of minimally IAC (MIA; OR, 6.306; 95% CI: 1.191-33.400) or atypical adenomatous hyperplasia (AAH)/adenocarcinoma in situ (AIS; OR, 189.539; 95% CI: 4.720-7,610.476), and the optimal diagnostic threshold between IAC and MIA was 1.35 cm; the CTm value of IAC was significantly higher than that of MIA, and the optimal diagnostic threshold was -460.75 HU. Thirdly, lepidic-predominant adenocarcinoma (LPA) manifest more commonly as pure ground-glass nodule (pGGN; OR, 6.252; 95% CI: 1.429-27.358) or mixed ground-glass nodule (mGGN; OR, 4.224; 95% CI: 1.223-14.585). Moreover, the mutation rate of epidermal growth factor receptor (EGFR) in IAC was 70.69% (41/58). The EGFR mutation rates of mGGNs (OR, 8.794; 95% CI: 1.489-51.933) and solid nodules (SNs; OR, 12.912; 95% CI: 1.597-104.383) were significantly higher than that of pGGNs. Furthermore, compared with those of micropapillary-predominant adenocarcinoma (MPA), solid-predominant adenocarcinoma (SPA), or invasive mucinous adenocarcinoma (IMA), there were significantly higher EGFR mutation rates in acinar-predominant adenocarcinoma/papillary-predominant adenocarcinoma (APA/PPA; OR, 55.925; 95% CI: 4.045-773.284) and LPA (OR, 38.265; 95% CI: 2.307-634.596). Conclusions: Different classifications of nodular lung adenocarcinoma have their own clinicopathological and CT imaging features, and the latter is the main predictor.

9.
Foods ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38890873

ABSTRACT

This study aims to establish a rapid and convenient microwave-assisted digestion method for sample pretreatment to determine amino acid profiles in natural products. This method was applied to analyze the amino acid profiles of Quisqualis Fructus (QF) from different planted origins. The microwave-assisted digestion conditions were optimized by a response surface methodology (RSM), and 17 amino acids in different planted origins of QF were determined by an automatic amino acid analyzer according to the optimized digestion conditions. The contents of 17 amino acids in QF from different planted origins were further analyzed by fingerprint and chemometric analysis. The temperature of microwave digestion at 167 °C, time of microwave digestion at 24 min, and a solid-liquid ratio of 46.5 g/mL was selected as the optimal digestion conditions. The total content of 17 amino acids in QF from different planted origins ranged from 71.88 to 91.03 mg/g. Amino acid composition and nutritional evaluation indicated that the content of medicinal amino acids was higher than aromatic amino acids. The results of fingerprint analysis reflected that the similarity between the 16 batches of QF ranged from 0.889 to 0.999, while chemometrics analysis indicated amino acid content in QF varied from different planted origins, and six important differential amino acids were screened. Compared with the traditional extraction method, microwave-assisted digestion with response surface optimized has the advantages of rapidity, convenience, and reliability, which could be used to study the amino acid profiles in natural products. The amino acid profile of QF indicated that it has a rich medicinal nutritional value. Different planted origins of QF have a high degree of similarity and could be effectively distinguished by chemometric analysis.

10.
Oncol Lett ; 28(2): 376, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38910901

ABSTRACT

Lung adenocarcinoma (LUAD) presents a significant global health challenge owing to its poor prognosis and high mortality rates. Despite its involvement in the initiation and progression of a number of cancer types, the understanding of the precise impact of MIS18 kinetochore protein A (MIS18A) on LUAD remains incomplete. In the present study, the role of MIS18A in LUAD was investigated by analyzing the genomic and clinical data from multiple public datasets. The expression of MIS18A was validated using reverse transcription-quantitative polymerase chain reaction, and in vitro experiments involving small interfering RNA-induced downregulation of MIS18A in lung cancer cells were conducted to further explore its impact. These findings revealed that elevated MIS18A expression in LUAD was associated with advanced clinical features and poor prognosis. Functional analysis also revealed the role of MIS18A in regulating the cell cycle and immune-related pathways. Moreover, MIS18A altered the immune microenvironment in LUAD, influencing its response to immunotherapy and drug sensitivity. The results of the in vitro experiments indicated that suppression of MIS18A expression reduced the proliferative and migratory capacities of LUAD cells. In summary, MIS18A possesses potential as a biomarker and may serve as a possible therapeutic target for LUAD, with significant implications for tumor progression by influencing both cell cycle dynamics and immune infiltration.

11.
Int J Biol Macromol ; 274(Pt 2): 133497, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944090

ABSTRACT

The monitoring of foodborne bacterial contamination requires simple and convenient biosensors. This work describes a novel paper-based colorimetric biosensor for the rapid and sensitive bacteria detection. The biosensor was constructed via the encapsulation of D-alanyl-D-alanine capped gold nanoparticles (DADA-AuNPs) in a modified paper that was fabricated by the freeze-drying of TEMPO-oxidized cellulose nanofibers/cationic guar gum composite hydrogel-modified filter paper. The results indicated that the size of DADA-AuNPs largely determined the color of their aqueous system and they exhibited light red to dark red as their size increased from around 6 to 36 nm. All these different sized DADA-AuNPs turned into colorless when encountered with either S. aureus or E. coli. In particular, the smaller the DADA-AuNPs size, the faster the discoloration. The encapsulation of DADA-AuNPs into modified paper negligibly changed their responsiveness towards bacteria. In comparison to the original filter paper and oven-dried hydrogel-modified filter paper, the freeze-dried hydrogel-modified paper was demonstrated to be a better substrate for the encapsulation of DADA-AuNPs since they could be loaded with a larger amount of DADA-AuNPs in a faster way and showed a better perceivable color. This work demonstrated a promising paper-based colorimetric biosensor for the facile and rapid detection of bacteria.

12.
Int J Biol Macromol ; 271(Pt 1): 132560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782332

ABSTRACT

Diabetics usually suffer from chronic impaired wound healing due to facile infection, excessive inflammation, diabetic neuropathy, and peripheral vascular disease. Hence, the development of effective diabetic wound therapy remains a critical clinical challenge. Hydrogen sulfide (H2S) regulates inflammation, oxidative stress, and angiogenesis, suggesting a potential role in promoting diabetic wound healing. Herein, we propose a first example of fabricating an antibiotic-free antibacterial protein hydrogel with self-generation of H2S gas (H2S-Hydrogel) for diabetic wound healing by simply mixing bovine serum albumin­gold nanoclusters (BSA-AuNCs) with Bis[tetrakis(hydroxymethyl)phosphonium] sulfate (THPS) at room temperature within a few minutes. In this process, the amino group in BAS and the aldehyde group in THPS are crossed together by Mannich reaction. At the same time, tris(hydroxymethyl) phosphorus (trivalent phosphorus) from THPS hydrolysis could reduce disulfide bonds in BSA to sulfhydryl groups, and then the sulfhydryl group generates H2S gas under the catalysis of BSA-AuNCs. THPS in H2S-Hydrogel can destroy bacterial biofilms, while H2S can inhibit oxidative stress, promote proliferation and migration of epidermal/endothelial cells, increase angiogenesis, and thus significantly increase wound closure. It would open a new perspective on the development of effective diabetic wound dressing.


Subject(s)
Gold , Hydrogels , Hydrogen Sulfide , Metal Nanoparticles , Serum Albumin, Bovine , Wound Healing , Wound Healing/drug effects , Gold/chemistry , Gold/pharmacology , Hydrogen Sulfide/chemistry , Hydrogen Sulfide/pharmacology , Animals , Serum Albumin, Bovine/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Metal Nanoparticles/chemistry , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Oxidative Stress/drug effects , Mice
13.
Nat Microbiol ; 9(6): 1555-1565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698178

ABSTRACT

The detection of oral bacteria in faecal samples has been associated with inflammation and intestinal diseases. The increased relative abundance of oral bacteria in faeces has two competing explanations: either oral bacteria invade the gut ecosystem and expand (the 'expansion' hypothesis), or oral bacteria transit through the gut and their relative increase marks the depletion of other gut bacteria (the 'marker' hypothesis). Here we collected oral and faecal samples from mouse models of gut dysbiosis (antibiotic treatment and DSS-induced colitis) and used 16S ribosomal RNA sequencing to determine the abundance dynamics of oral bacteria. We found that the relative, but not absolute, abundance of oral bacteria increases, reflecting the 'marker' hypothesis. Faecal microbiome datasets from diverse patient cohorts, including healthy individuals and patients with allogeneic haematopoietic cell transplantation or inflammatory bowel disease, consistently support the 'marker' hypothesis and explain associations between oral bacterial abundance and patient outcomes consistent with depleted gut microbiota. By distinguishing between the two hypotheses, our study guides the interpretation of microbiome compositional data and could potentially identify cases where therapies are needed to rebuild the resident microbiome rather than protect against invading oral bacteria.


Subject(s)
Bacteria , Dysbiosis , Feces , Gastrointestinal Microbiome , Mouth , RNA, Ribosomal, 16S , Feces/microbiology , Humans , Animals , Mice , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Dysbiosis/microbiology , Mouth/microbiology , Colitis/microbiology , Disease Models, Animal , Inflammatory Bowel Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Mice, Inbred C57BL , Female , Dextran Sulfate
14.
Aging (Albany NY) ; 16(10): 9228-9250, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38809509

ABSTRACT

Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are autoimmune disorders characterized by progressive and chronic damage to the bile ducts, presenting clinicians with significant challenges. The objective of this study is to identify potential druggable targets to offer new avenues for treatment. A Mendelian randomization analysis was performed to identify druggable targets for PBC and PSC. This involved obtaining Cis-protein quantitative trait loci (Cis-pQTL) data from the deCODE database to serve as exposure. Outcome data for PBC (557 cases and 281,127 controls) and PSC (1,715 cases and 330,903 controls) were obtained from the FINNGEN database. Colocalization analysis was conducted to determine whether these features share the same associated SNPs. Validation of the expression level of druggable targets was done using the GSE119600 dataset and immunohistochemistry for clinical samples. Lastly, the DRUGBANK database was used to predict potential drugs. The MR analysis identified eight druggable targets each for PBC and PSC. Subsequent summary-data-based MR and colocalization analyses showed that LEFTY2 had strong evidence as a therapeutic candidate for PBC, while HSPB1 had moderate evidence. For PSC, only FCGR3B showed strong evidence as a therapeutic candidate. Additionally, upregulated expression of these genes was validated in PBC and PSC groups by GEO dataset and clinical samples. This study identifies two novel druggable targets with strong evidence for therapeutic candidates for PBC (LEFTY2 and HSPB1) and one for PSC (FCGR3B). These targets offer new therapeutic opportunities to address the challenging nature of PBC and PSC treatment.


Subject(s)
Cholangitis, Sclerosing , Liver Cirrhosis, Biliary , Mendelian Randomization Analysis , Quantitative Trait Loci , Humans , Cholangitis, Sclerosing/genetics , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/drug therapy , Polymorphism, Single Nucleotide , Databases, Genetic
15.
ACS Nano ; 18(21): 13745-13754, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739489

ABSTRACT

The quest for sustainable urea production has directed attention toward electrocatalytic methods that bypass the energy-intensive traditional Haber-Bosch process. This study introduces an approach to urea synthesis through the coreduction of CO2 and NO3- using copper-doped molybdenum diselenide (Cu-MoSe2) with Cu-Mo dual sites as electrocatalysts. The electrocatalytic activity of the Cu-MoSe2 electrode is characterized by a urea yield rate of 1235 µg h-1 mgcat.-1 at -0.7 V versus the reversible hydrogen electrode and a maximum Faradaic efficiency of 23.43% at -0.6 V versus RHE. Besides, a continuous urea production with an enhanced average yield rate of 9145 µg h-1 mgcat.-1 can be achieved in a flow cell. These figures represent a substantial advancement over that of the baseline MoSe2 electrode. Density functional theory (DFT) calculations elucidate that Cu doping accelerates *NO2 deoxygenation and significantly decreases the energy barriers for C-N bond formation. Consequently, Cu-MoSe2 demonstrates a more favorable pathway for urea production, enhancing both the efficiency and feasibility of the process. This study offers valuable insights into electrode design and understanding of the facilitated electrochemical pathways.

16.
Int J Biol Macromol ; 269(Pt 2): 132060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719014

ABSTRACT

In the context of starch-protein composite gels, the influence of protein on gel formation significantly shapes the textural attributes of starch gels, leading to distinct outcomes. This study aimed to evaluate how different ratios of pea protein (PP) affect the properties and structures of starch-protein composite gels at low (10 wt%) and high (40 wt%) solid concentrations. The addition of PP had opposite effects on the two gels. Compared to the pure starch gel, the low-concentration composite gel (LCG) with 20 % PP experienced a 48.90 ± 0.33 % reduction in hardness, and the storage modulus (G') decreased from 14,100 Pa to 5250 Pa, indicating a softening effect of PP on LCG. Conversely, the hardness of the high-concentration composite gel (HCG) with 20 % PP exhibited a 62.19 ± 0.03 % increase in hardness, and G' increased from 12,100 Pa to 41,700 Pa, highlighting the enhancing effect of PP on HCG. SEM and fluorescence microscopy images showed that PP induced uneven network sizes in LCG, while HCG with a PP content of 20 %, PP, together with starch, formed a three-dimensional network. This study provides valuable insights and guidance for the design and production of protein-enriched starch gel products with different textural properties.


Subject(s)
Gels , Pea Proteins , Starch , Starch/chemistry , Gels/chemistry , Pea Proteins/chemistry , Pisum sativum/chemistry , Hardness
17.
18.
Food Res Int ; 186: 114362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729724

ABSTRACT

As food safety continues to gain prominence, phycocyanin (PC) is increasingly favored by consumers as a natural blue pigment, which is extracted from microalgae and serves the dual function of promoting health and providing coloration. Spirulina-derived PC demonstrates exceptional stability within temperature ranges below 45 °C and under pH conditions between 5.5 and 6.0. However, its application is limited in scenarios involving high-temperature processing due to its sensitivity to heat and light. This comprehensive review provides insights into the efficient production of PC from microalgae, covers the metabolic engineering of microalgae to increase PC yields and discusses various strategies for enhancing its stability in food applications. In addition to the most widely used Spirulina, some red algae and Thermosynechococcus can serve as good source of PC. The genetic and metabolic manipulation of microalgae strains has shown promise in increasing PC yield and improving its quality. Delivery systems including nanoparticles, hydrogels, emulsions, and microcapsules offer a promising solution to protect and extend the shelf life of PC in food products, ensuring its vibrant color and health-promoting properties are preserved. This review highlights the importance of metabolic engineering, multi-omics applications, and innovative delivery systems in unlocking the full potential of this natural blue pigment in the realm of food applications, provides a complete overview of the entire process from production to commercialization of PC, including the extraction and purification.


Subject(s)
Microalgae , Phycocyanin , Microalgae/metabolism , Spirulina/chemistry , Spirulina/metabolism , Metabolic Engineering
19.
Adv Sci (Weinh) ; 11(24): e2309645, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38650176

ABSTRACT

Chiral aldehydes containing a tertiary stereogenic center are versatile building blocks in organic chemistry. In particular, such structural motifs bearing an α,α-diaryl moiety are very challenging scaffolds and their efficient asymmetric synthesis is not reported. In this work, a phosphoric acid-catalyzed enantioselective synthesis of α,α-diaryl aldehydes from simple terminal alkynes is presented. This approach yields a wide range of highly enolizable α,α-diaryl aldehydes in good yields with excellent enantioselectivities. Facile transformations of the products, as well as an efficient synthesis of bioactive molecules, including an effective anti-smallpox agent and an FDA-approved antidepressant drug (+)-sertraline, are demonstrated.

20.
Chem Sci ; 15(16): 5993-6001, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665510

ABSTRACT

Axially chiral molecular scaffolds are widely present in therapeutic agents, natural products, catalysts, and advanced materials. The construction of such molecules has garnered significant attention from academia and industry. The catalytic asymmetric synthesis of axially chiral biaryls, along with other non-biaryl axially chiral molecules, has been extensively explored in the past decade. However, the atroposelective synthesis of C-O axial chirality remains largely underdeveloped. Herein, we document a copper-catalyzed atroposelective construction of C-O axially chiral compounds using novel 1,8-naphthyridine-based chiral ligands. Mechanistic investigations have provided good evidence in support of a mechanism involving synergistic interplay between a desymmetrization reaction and kinetic resolution process. The method described in this study holds great significance for the atroposelective synthesis of C-O axially chiral compounds, with promising applications in organic chemistry. The utilization of 1,8-naphthyridine-based ligands in copper catalysis is anticipated to find broad applications in asymmetric copper(i)-catalyzed azide-alkyne cycloadditions (CuAACs) and beyond.

SELECTION OF CITATIONS
SEARCH DETAIL
...