Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 152: 109784, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067495

ABSTRACT

Exocyst, a protein complex, plays a crucial role in various cellular functions, including cell polarization, migration, invasion, cytokinesis, and autophagy. Sec3, known as Exoc1, is a key subunit of the Exocyst complex and can be involved in cell survival and apoptosis. In this study, two subtypes of Sec3 were isolated from Epinephelus coioides, an important marine fish in China. The role of E. coioides Sec3 was explored during Singapore grouper iridovirus (SGIV) infection, an important pathogen of marine fish which could induce 90 % mortality. E. coioides Sec3 sequences showed a high similarity with that from other species, indicating the presence of a conserved Sec3 superfamily domain. E. coioides Sec3 mRNA could be detected in all examined tissues, albeit at varying expression levels. SGIV infection could upregulate E. coioides Sec3 mRNA. Upregulated Sec3 significantly promoted SGIV-induced CPE, and the expressions of viral key genes. E. coioides Sec3 could inhibit the activation of NF-κB and AP-1, as well as SGIV-induced cell apoptosis. The results illustrated that E. coioides Sec3 promotes SGIV infection by regulating the innate immune response.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Fish Proteins , Immunity, Innate , Phylogeny , Ranavirus , Animals , Fish Diseases/immunology , Fish Diseases/virology , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , Immunity, Innate/genetics , Bass/immunology , Ranavirus/physiology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Gene Expression Regulation/immunology , Sequence Alignment/veterinary , Amino Acid Sequence , Gene Expression Profiling/veterinary
2.
Small ; 20(2): e2305019, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37661575

ABSTRACT

Na-based layered transition metal oxides with an O3-type structure are considered promising cathodes for sodium-ion batteries. However, rapid capacity fading, and poor rate performance caused by serious structural changes and interfacial degradation hamper their use. In this study, a NaPO3 surface modified O3-type layered NaNi1/3 Fe1/3 Mn1/3 O2 cathode is synthesized, with improved high-voltage stability through protecting layer against acid attack, which is achieved by a solid-gas reaction between the cathode particles and gaseous P2 O5 . The NaPO3 nanolayer on the surface effectively stabilizes the crystal structure by inhibiting surface parasitic reactions and increasing the observed average voltage. Superior cyclic stability is exhibited by the surface-modified cathode (80.1% vs 63.6%) after 150 cycles at 1 C in the wide voltage range of 2.0 V-4.2 V (vs Na+ /Na). Moreover, benefiting from the inherent ionic conduction of NaPO3 , the surface-modified cathode presents excellent rate capability (103 mAh g-1  vs 60 mAh g-1 ) at 10 C. The outcome of this study demonstrates a practically relevant approach to develop high rate and durable sodium-ion battery technology.

3.
Fish Shellfish Immunol ; 145: 109313, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128678

ABSTRACT

The dual-specificity phosphatase (DUSP) family plays key roles in the maintenance of cellular homeostasis and apoptosis etc. In this study, the DUSP member DUSP1 of Epinephelus coioides was characterized: the length was 2371 bp including 281 bp 5' UTR, 911 bp 3' UTR, and a 1125 bp open reading frame encoding 374 amino acids. E. coioides DUSP1 has two conserved domains, a ROHD and DSPc along with a p38 MAPK phosphorylation site, localized at Ser308. E. coioides DUSP1 mRNA can be detected in all of the tissues examined, and the subcellular localization showed that DUSP1 was mainly distributed in the nucleus. Singapore grouper iridovirus (SGIV) infection could induce the differential expression of E. coioides DUSP1. Overexpression of DUSP1 could inhibit SGIV-induced cytopathic effect (CPE), the expressions of SGIV key genes, and the viral titers. Overexpression of DUSP1 could also regulate SGIV-induced apoptosis, and the expression of apoptosis-related factor caspase 3. The results would be helpful to further study the role of DUSP1 in viral infection.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Iridovirus , Ranavirus , Animals , Bass/genetics , Iridovirus/physiology , Singapore , Cloning, Molecular , Apoptosis , Dual-Specificity Phosphatases/genetics , Fish Proteins/genetics , Phylogeny
4.
Cell Biochem Biophys ; 73(1): 213-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25721870

ABSTRACT

Although As2O3 (ATO) has been recommended as the front-line agent for treatment of acute promyelocytic leukemia (APL), particularly for relapsed or refractory APL, it has been associated with profound toxicity. Icariin is a natural compound with activity against a variety of cancers. This study was designed to investigate the effect of Icariin on APL cells and to determine whether Icariin can potentiate the antitumor activity of ATO in APL cells. Cell proliferation and apoptosis were measured using MTT assay and flow cytometry, respectively. The expression of apoptosis and proliferation-related molecules was detected by Western blotting. Reactive oxygen species (ROS) and mitochondrial membrane potential were determined with florescence staining. Icariin inhibited proliferation in a dose-dependent manner and induced apoptosis in both of the tested APL cell lines. Icariin enhanced the in vitro antitumor activity of ATO against APL. The antitumor activity of Icariin and its enhancement of the antitumor activity of ATO correlated with the increase in accumulation of intracellular ROS. Our results showed that Icariin, by increasing intracellular ROS, exhibited antitumor activity and potentiated the antitumor activity of ATO against APL. Therefore, combination treatment with Icariin and ATO might offer a novel therapeutic option for patients with APL, although further studies are needed.


Subject(s)
Antineoplastic Agents/pharmacology , Arsenicals/pharmacology , Flavonoids/pharmacology , Leukemia, Promyelocytic, Acute/metabolism , Oxides/pharmacology , Apoptosis/drug effects , Arsenic Trioxide , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Humans , Membrane Potential, Mitochondrial , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL